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Computation of a chemical potential using a residence weight algorithm
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The test particle insertion method and its generalization to biased insertion schemes allows the computation
of chemical potentials in fluids. Even though these techniques can be implemented in dense systems, the
convergence of the estimated value for the chemical potential must be carefully checked and additional
simulations are actually required. We propose to compute the chemical potential using a residence weight
algorithm. With this algorithm, it is shown that, for a given amount of computer time, the degree of conver-
gence towards the exact chemical potential correlates with the mean rate for accepting the trial particle
insertions or deletions. The residence weight algorithm thus offers a reliable built-in tool for diagnosing the
numerical convergence.
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[. INTRODUCTION The disadvantage of all mentioned techniques is that it-
erative computations are necessary so as to accurately locate
The estimation of free energies in solids and liquids bythe equilibrium conditions between two coexisting phases.
means of atomistic computer simulations is of central impor-That is the reason why a third approach has been developed
tance in practical problems involving the calculation of that consists in simulating in the Gibbs ensenildle For the
phase coexistence conditions. For instance, the computatiayeneral case of coexisting phases, the Gibbs ensemble ap-
of chemical potentials and solubility limits in silicate-based proach considers separate computational cells. Coupled
nuclear glasses is a challenging technological task requiredlonte Carlo moves are then performed between two ran-
by nuclear waste management programs. The three last ddemly chosen cells so that both chemical potentials and pres-
cades have witnessed the development of numerous Mongire are not needed to be specified. For instance, if a particle
Carlo simulation tools for measuring thermodynamical phasés deleted from one cell, then the same type of particle will
guantities[see the recent review book by Smit and Frenkelbe inserted in an other cell. Similarly, a volume variatiou
[1]]. in one cell, is carried out in parallel with a volume variation
Monte Carlo sampling of a given configurational space— AV in an other cell. During a single Gibbs ensemble simu-
[2] consists in constructing a configurational chain by meangation, it has been demonstratgd] that compositions and
of a stochastic process for which the evolution rules are ereensities for each cell must converge towards the equilibrium
godic and obey detailed balance. These two conditions insunealues of a different phase. The computation of chemical
that the chain converges towards the equilibrium Boltzmanrpotentials can be carried out in the course of the Gibbs en-
statistics. Detailed balance is usually imposed because it isemble simulation.
in practice, a convenient way to insure that the sampling Implementing whatever method of the three mentioned
scheme leads to the equilibrium statistics. However, it is approaches implies that one is able to insert or delete any
sufficient but not a necessary condition. given type of particle. This point is problematic since in
Since phase coexistence implies the equality of chemicalense phases, there is no space to insert an additional particle
potentials between coexisting phases, two approachesaeenor, similarly, deleting a particle generates too much distortion
priori possible:(i) chemical potentials can be computed for ain the system(creation of a high energy cavjtyWe briefly
series of composition@r densitiegin order to construct the review the various techniques that have been developed to
eventual free energy basins from which coexisting composieircumvent this difficulty.
tions can be deduced using the double tangent fiijegom- With the methods of the second and third approaches, the
positions and densities can be estimated for a series @lcceptance probabilities are so small that, in practice, transi-
chemical potentials in order to locate an hysteresis loop iions can never be accepted. Biased Monte Carlo methods,
the composition-chemical potential plan. The methods of theuch as the configurational-bias schefg and the recoil-
first approach consist of computing the free energy differgrowth schem¢7,8], allow to solve the insertion problem in
ence between two canonical ensembles differing by only onenoderately dense polymeric systems. These biased particle
“test” particle and are based on Widom’s test insertioninsertion schemes generate energetically favorable trial con-
method[3]. At variance, the various methods of the secondformations using a probabilistic procedure aimed at minimiz-
approach involve moves performed at imposed chemical paing the energy of the molecule to insert.
tentials, such as particle deletions, insertions or transmuta- A similar difficulty appears with the techniques of the first
tions, which means that simulations are carried out in thepproach. When the test insertion method is implemented in
grand or semigrand canonical ensembles. too dense a system, the Monte Carlo sampling procedure
does not converge and the values measured for the chemical
potentials are meaningless. To accelerate the convergence,
*Electronic address: Manuel.Athenes@cea.fr the biased Monte Carlo methods mentioned above have been
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used for inserting the test particle. The improved version obf its compatibility with the principle of detailed balance is
the Widom method that uses the configurational-bias inseralso given in Appendix B.

tion schemg[9,10] is called Rosenbluth sampling and ap-

pears to be an extension of an earlier scheme based on the Preliminary definitions

generation of biased polymer conformatidrid]. The test  The system that will be used in the applicative part of the
insertion method can also be implemented with the recoilyresent study will be either a binary Ising system or an unary
growth insertions. This method can be considered as the dy-ennard-Jones fluid. However, to simplify the presentation
namical extension of related static and recursive schemetgf the theory, we can first assume that the system contains
[12-14. A similar approach suited to nonpolymeric systemsone type of particléthe Ising system can be considered as a
would consist in implementing the “fast growth” method |attice-gaz mode!

[15,16 in combination with the test particle insertion Let us consider a system bf particles and volum¥. We
method. This combined technigué&7] indeed consists in assume that the system is contained in a cubic cell of &dge
substituting a “work-bias” scheme for the configurational- and writeE(r™) the internal energy of a configuration where
bias or recoil-growth schemes of the previously mentionedhe 3N vectorr™ corresponds to the particle coordinates. The
techniques. The work-bias scheme consists in gradually inconfigurational energy is described by the pairwise interac-
troducing or deleting the test particle while reversibly relax-tion potential:

ing the system. This technique thus appears as the dynamical

extension of the “static” thermodynamic integration method E(rN)ZE I(Iri—ri)), (1)

[1]. The advantage of work-bias over configurational-bias is ij

that arbitrarily dense systems can be sampled adequately, if

enough computational effort is invested in sufficiently slowl Where the summation runs on all particle pairs gnetr|
. 9 P ) y ycorresponds to the distance between particiasd].
inserting the test particle.

Th in limitati ¢ all th tioned techni . Let us introduces the scaled particle coordinates with
€ main imitation ot all the mentioned techniques IS respect to the cell size andE(s";L) the internal energy of

that no built-in diagnostic tools are available to check the, configuration. Since only one type of particle is present, the

convergence of the estimated free energy difference ang,nonical partition function of the system is given by
careful analysis of the result is ultimately required. Diagnos-

ing the numerical convergence of the chemical potential ac- VN
tually requires to carry out a series of simulations. For in-  Q(N,V,T)= AN
stance, the overlapping distribution methpt8] and the ’

acceptance ratio method.8] compare the results of two where 3=1/k,T is the inverse temperature akg is Boltz-
simulations: one where the test particle is inserted, and afann’s constant. The kinetic contribution corresponds to
other one where it is deleted. The last technique will bei/A3N, where A is the de Broglie wavelength A(
referred to as the test deletion method. Other examples are \|hZ/2- mk,T), mis the particle mass artuPlanck’s con-

the umbrella sampling schenj&9] and the method of ex- stant. Let us also introduce the ideal gaz partition function
panded ensembld®0], the latter method having been suc-

cessfully applied to the particle insertion methi@i—24. . VN
They, however, compute the desired free energy difference Q"(N,V,T)= N
by means of an iterative weighing procedure. A related dis- :

advantage of the expanded ensemble method is that it is NQihich corresponds to the partition function of an ensemble
immediately amenable to the Gibbs enseni®,2§ unlike ¢ N noninteracting particles contained in the volumand

the test insertion method and its extention to biased Montg; temperaturd. The free energy is deduced from the parti-
Carlo schemes. tion function:

The aim of the present article is to propose a method of
computing free energy differences that possesses a built-in 1
tool for diagnosing the convergence of the estimated value. F(N,V,T)=~— Eln QIN,V,T). 4
The article is organized as follows: The test insertion method
is first derived from a purely deductive point of view so as toThe chemical potentigk corresponds to the free energy de-
introduce a modification to it. The proposed algorithm is thenrivative with respect to the number of particle and can be
implemented and numerically validated in an Ising systenobtained from the differende(N+1,V,T)—F(N,V,T), if N
with both unbiased and configurational-bias insertion/is large enough. It is also convenient to express the chemical
deletions. Then, in order to show the usefulness of the propotential as the sum of an ideal contributipgy and of an
posed technique, a Lennard-Jones system at low temperatuggcess chemical potential.,. The two contributions are
and relatively high density will be considered which requiresdefined as follows :
to implement the work-bias scheme. It is then practically _
demonstrated that accurate measurements can be obtained if 1. QYUN+LV,T) 1 \%
a simple criterion is fullfilled. The various techniques that Mid =~ Eln QU(N,V.T) - EInA3(N+1) 5)
will be considered in this study are summarized in Table I. A Y
description of the the work-bias scheme and a demonstratioand

fl . fldsNexp—BE(sN;L), 2
0 0

()
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TABLE |. Available interrelated techniques to compute the mean number of parfidlen the grand
canonical ensembl® (u«,V,T) or the chemical potentigh=—1/8IN[Q(N+1,V,T)/Q(N,V,T)]. The quan-
tities (Ry)o and(W$, "), correspond to the averaged Rosenbluth and the work factors, respectively, and
to the number of parallel beads inserted in parallel or to the number of switching steps, correspondingly.

Low density systems
Quantity to estimate Techniques

(N) Classical unbiased insertions/deletions and particle
displacements and additional particle displacements

1 ) . . .
Mox=— EIn(exp—B(El— E%)o Widom test insertion method in tH@(N,V,T)
canonical ensemble

Intermediate molecular systems
Quantity to estimate Techniques

(N) Configurational-bias insertions/deletions
and additional particle displacements

1 . ) .
Moo= — EmmM)o Rosenbluth sar_npllng_: Wldom method with
configurational-bias
test insertions iMQ(N,V,T) ensemble

High density systems

Quantity to estimate Techniques

(N) Work-bias insertions/deletions
1 0—1 .

Mox=— Eln(WM Yo Fast-growth method: work-

bias test particle insertions

1z Il. METHODS

=——Inz-, 6
He™ = 877, © A. Test insertion method

A purely deductive approach is adopted to derive the test

where Z, and Z, corresponds to some “excess partition insertion method 3]. Its modification/extension indeed re-

functions” . e . ) -
quires, as a preliminary, to rigorously define the conditions
of detail balance that prevail in this non-Boltzmannian
_ Q(N,V,T) @) method.
0 Q'Y(N,V,T) In non-Boltzmannian sampling schemes, a weightis
attributed to each configuration of the configuration chain so
and as to correct the sampling scheme in such a way that the
backwards and forwards weighted probability fluxes between
Q(N+1V,T) any two consecutive configuratiods andC,. 4 of the chain
= (8)  are always equal:
QY(N+1V,T)
1 1
The configurational internal energies correspondinggo - Fna(N—n+ 1[n—1) = Panra(n+ 1—n[n+2),
and Z, are defined a€® and E!, respectively. Note that, " et (10)

unlike Q(N,V,T) andQ(N+1V,T), Z, andZ; contain dis-
tingu_ishable particles. The excess _partition functipand  whereP, andP, . ; are the Boltzmann weights of tiis and
Zy d_|ffer fron_1 only one labeled particle, often called the testc . configurations, a(n—n+1|n—1) is the transition
part(l)cle as in the Widom method. The energyE'=E*" cErobability fromC, to C,,, 1 knowing that the system was in
—E” experienced by the test particle can be easily obtaineq? . pefore. Similarly, for the backwards chaim(n+ 1
—n|n+2) is the transition probability fronC,,; to C,
AEE=S I(|rs=ri), 9 knoyvmg that the system was (ﬁwz before. The sampll.ng
Ej: (Irs ’|) © “weights” 7, and 7,, 1 can be interpreted as follows: if a
weight of one is attributed to configurati@hy, then the se-
wherelrl—rj| corresponds to the distance separating the tedected configuratio,, . ; must be given a weight of,,, 1 / 7,
particle to thejth particle of systenx,. S0 as to account for the nonarea preserving transition. It fol-
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lows by induction that Eq(11) leads to a correct sampling The cumulated weight(1) [respectivelyr(0)] is incre-

scheme for the evaluation of a physical quantity mented byr [respectivelyr_, ;] each timeZ, (respectively
Z,) is visited. The chemical potential is obtained from the
N following equation:
2, nA(D)
_- 1 71
(A= (1) Hox=— —In(—o), (13

S o B 7(0)
i=1

where the hidden factor (1p) ! in (1) corrects for the

The weighted detailed balance conditiét0) insures a fact that transitions towardgo are carried out more often
convergence towards the equilibrium statistics which is, infhan the ranPom test insertions towaids Removing the
the general case, much weaker than the convergence of théas (1-p) ~ associated to the asymmetric samplingZgf
Hasting-Metropolis algorithni27]. This is the case for ran- +Z, yields a statistically equivalent formulation for long
dom sampling or random walk sampling of a given integral™uns, expressed as follows:

(partition function which are poorly converging statistical
schemes, and, unfortunately, the test insertions of the Widom id
method are based on such a random sampling scheme. Mox= — —In<—gexp— B(Eﬁ—E2)> , (14)

The test insertion method consists in directly extracting B\ by 0
the chemical potential from the partition function ratio given
by Eq.(6). This ratio is obtained by means of a Monte CarloWhere <(de/an)exp—/3(E,l1—Eﬂ)>o corresponds to a mean

sampling of the dual ensemhfe=Z,+Z,. One Monte Carlo  yalye for the test insertion procedure during the simulation.
step consists in implementing one of the three possiblerhis way of proceeding corresponds to the original Widom
moves defined below for the step if configurationC, be-  scheme if the test insertion is unbiasé'& bQ).
longs toZ,, with probabilityp, a standard Metropolis move  The Rosenbluth scheme consists in substituting the
is carried out fromZ, t0 Zo, or with probability 1-p, @ = ¢onfigurational-bias particle insertiorisvhere bi%/bQ#1)
random transitioinsertion) towardsZ, is performed which ¢ yhe | niased test insertiofishereb!=bg). Note that if
requires to correct the weight of th configurations by a o paricles possesse internal interactions, the ideal chemical
factor 7, specified below; if the configuration belongs29,  ,qtential 4, must be carefully and rigorously defined and
a move towardsZ, is carried out. This again requires 10 then computed in a separate ri28]. With the Rosenbluth
update the sampling weight of the final configuration.  gcheme, test particle removals are unbiased and thus coin-
Ergodicity is guaranteed by the standard MetropoliSgijes with real Monte Carlo moves. However, since the
moves. The sampling weighf, is derived from the weighted priori probability to reinsert the test particle can not be
detailed balance Eq10) and can be expressed as follows: ynjyocally defined from the way the particle is deleted, the
transition corresponding to the test particle deletion requires

id informations about the way the previous move was carried
Tl=(1—p)*1—nexp—,8(El—E°), (12 out so as to reset the configuration weight to one. Even
n Q n n . . .

n though the sampling step corresponding to the particle dele-

tion can be considered as a kind of non-Markovian move, the

0 : , . 1. correcting bias which has been introduced guarantees both

;/\r/]he_retEn |s|the mtern?tl entifg)t’ oftconftl_grrar:laﬂ;q SndE,_] 'S ; {.Ele reversibility and the conservation of phase space during
e internal energy after the test particle has been inserteg, sampling process.

thg yvelght of 'the |n|t|al conflgu'ratlon' is ondyy is the a In the two mentioned examples, the particle deletion co-
priori probability to yrgjs.ert a particle with respect to % jcides with a move carried out with anpriori probability
canonical ensembléy’ is the associated priori probability  of one. However, this is not a necessary condition. The par-
relative to the ideal gaz d¢honinteracting particles. In prac- tjcle deletion itself may result from a forced transition corre-
tice, by is actually generated arigly' is computeda poste-  sponding to a biased move. The scheme is correct as long as
riori . The probability ratidb}!/bY corresponds to a normal- the move is adequately accounted for in the sampling process
izeda priori probability with respect to th& ensemble. The by an additional correcting factor. This factor corresponds to
fact that thea priori normalized probability for the particle ana priori probability b,y # 1 for removing the particle and
deletion is one, implies that this Monte Carlo move indeedcan be formally derived by means of an appropriate path-
corresponds to the imposed test particle removal of the Wifunction average taken over the path ensemble conne£ging
dom method. This transition requires, as a result of (), andZ, [29]. The additional correcting factor is then incorpo-
to reset the configuration weigh{ , , to one. Since the sub- rated into the configuration weight

sequent configuration weight% (p>n+1) associated to

the Metropolis moves frorZ, to Z, always remain equal to b~
one (they must be taken into accojinthe stability and the Tne1=(1— p)*l—iexp— B(EL—EY), (15
reversibility of the sampling scheme is insured. b,
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whereb, andb, , thea priori probabilities for inserting and adequately estimated using an iterative procedure, and occu-
deleting the test particle are generated with respegt fohe ~ Pation probabilitiesp[1] and p[0], can then be accumu-

Widom method then becomes lated. The chemical potential can finally be extracted from
both wes; and the occupation probabilities:
1 /b,
,Lex:——|n<—exm3(5ﬁ—eﬁ)> . (16) _ 1 |c>[1]+

B b: 0 Mex ,Bmp[O] Mest- (19
Such a situation appears if the work-bias scheme is used ) o )
since both insertions and deletions are biagefer to Ap- We now propose a more direct method that similarly uti-
pendix B or if the configurational-bias scheme is imple- lizes both insertions and deletions during a single run but
mented with the test deletion methf@D]. that does not require any estimation of the value to compute.

Note that the concept of forcing a transition and subseThe dual ensembl&=2Z,+Z; will be sampled, but two
quently correcting the sampling scheme indeed originatestarting configurationg;, andC,, are required, the first one
from the Metropolis algorithm itse[f2]. Let us consider that belonging toZ, and the second one #,. One also assumes
a configuration chain has been constructed with the Metropahat everya priori trial move leads to a transition fro#y, to
lis algorithm up to configuratio®,. At the next step, one Z,, or vice versa. Let us now consider that the configuration
assumes that the configuratiGgp has been generated wigh  chain has been constructed updg,, ;. The a priori prob-
priori probability b but was rejected with the Metropolis ability b3y, to remove the just inserted particle with the
probability reverse expanded move is different from one. In order to

include both trial insertions and deletions in the sampling

b2/7’n/ procedure, one proceeds as follows: one generates a new trial

' 17 particle deletion ofa priori probability b%ﬂﬂ'; one then

selects configuratiods,, ., , betweenC,, andC,, 1/ . Simi-

whereP, and P, are the corresponding Boltzmann weights 1arly; for the next +2)-nd step, the test particle is intro-
andbg, is thea priori probability to generaté,, from C,. . In duced either at a new trial location or at the old location.

. . o The selection procedure for deciding whether the next
order to insure microreversibility for each step of the whole . T .
. i ! i L configuration is the older one or the new one must insure that
sampling process, the next configurat@n ; in the chain is

) . all the a priori probabilities are adequately accounted for in
constructed as follows: one forces a transition towards th?he sampling procedure. Actually, the adequate scheme is the
fgrgarg; C?gé'g;éagﬂg f’:({i; clngrq)éra(t:gsnfrl]ietrrlg? ctgr?;[ for thoen residence weight algorithm initially developed for perform-

v P ’ . g ! iguiafi ing Monte Carlo simulations on parallel computer architec-
from C,, 1 and also rejects it, one would also have to perfor

¢ 4t ition t Si the last ! Miures [31]. This scheme satisfies the required criteria. This
a forced transition owarcEnH.._ Ince the last move is car- algorithm can thus be implemented to compute the free en-
ried out with the total probability of

ergy difference of the present problem. Such a sampling pro-
( b1 cedure will be called “residence weight sampling.” The
n’ n’ n’
L s —
) bri1Pasa

bp' P,

(18) technique is now described and a proof that detailed balance
' is obeyed is then given. The three possible versions of the
test insertion method mentioned in the present study and

it results that detailed balance is mercifully satisfied betweeitheir essential features are summerized in Table I1.

any two identical configurations of the chain. With residence weight sampling, the basic moves that will
be generated are either particle insertion or deletion in a dual
B. Residence weight sampling ensembl& =Z,+Z;. Two starting configuration§, andC;

One wishes to modify the Widom method in such a Wayg(azreqrurllree:i g:zﬁtzrrit izno(Ia e?i(r?llgg %\Ig?‘gﬁ)o?/cg the second one
1- .

:)he?rtti tggﬁ fiitgt?:r??: n%f ngg?etﬁzggggflz “%cl)iﬂtcgl?gr?ggn}c;etr?ﬁ (i) generate a trial particule insertion or deletion and com-

pling” procedure but is rather obtained by means of an adpute the forwards and backwardspriori probabilitiesby,

equate form of importance sampling as in the Metropolisand bﬂ/-

a'QAOFift_hn: itSIF«"I; o blem has b 4 and (i) Compute the forwards and backwards factafs
irst solution to the problem has been proposed an - _

consists in performing a I\F/)Ietropolis sampling FZ)f ?he biased:(bz ) nl_zix.p% B(En—Ex) aﬁ;(bﬂ,) l.?Xp%’B(E”'_E“)’

dual ensemble = Zo+ Z,expBiies, Where o, is a con- whereb, ~ is the storeda priori probability for the back-

stant. During a single simulation, both trial insertions andWards preceding move.
: 9 9 ' (iii) Select the (+1)-st configuration among,_; and

trial deletions are thus proposed for the Metropolis accep- : ; . '
S . S . C, according to their respective normalized probabilities
tance criterion. The biag.; is introduced because in prac-

n—-1;/,n—1 n’ n’ n—-1 n’
tice, the partition function rati@, /Z, spans many orders of @n _/(an +a, ) anda, /(a, n+ a, );] -
magnitude and, as a result, occupation probabilities may be (V) If C,,1=C,s then setby,,=b,, otherwiseby,,
confined to eitheriZ,; or Z,. The balancing factop,s; IS =b]_,.
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TABLE II. Schematic representation of the three possible insertion methods aimed at computing an
excess chemical energy in a low density sysfem,=—1/8In(Z;/Zy)]. In high density systems, biased
Monte Carlo moves can be implemented with the three methods. However, the method of expanded en-

sembles proposes to introduce additional channels in the partition furtticefer to the Appendix B

Quantity to estimate Techniques and features

1 . . .
Hex=— —In{exp— BAEY), Widom test insertion fronZ, to Z;
B non-Boltzmannian and asymmetric samplingZgft-Z,
no diagnostic tool to check the convergence

1 pi]

Mex= Mest— Elnm Method of expanded ensemble Zi3 + ZeXp Bitest

Boltzmannian sampling afy+ Z,exXp Biiest
requires a guesgg; of the quantity to measure but robust

Mex=— —5In— Residence weight sampling d@f,+ 2,
B o non-Markovian sampling, symmetric with respectdgandZ,,
built-in diagnostic tool to check the convergence.

(v) Compute the residence weight=1/(a" *+a""), in- . antt .
crement the cumulated residence weight of the appropriate T_npnbn mrn
channel: ifn is even, 7(0)— 7(0)+ 7,, otherwise, 7(1) n n
—71(1)+7,. , an
One then obtains a symmetric residence weight ratio for = Pps b ﬁrﬂﬂ, (21)
the excess chemical potential Tn+1 Any1 n+1
where bg”jll)' is the a priori probability to generate’,
1 (1) =Cnyo OF Cy#Ch.o depending on whether theng 1)th
Mex=— EInT(O)' (20 transition corresponds to a reversal or naf,’}fll)' is the

associated acceptance pateThe bias factors rfi*™?

=b""Yp"" and r?,,=b", /b correct for the
Note that, when the system resides in ensenflethe  “forced” reversal events. They are equal to one if the trial
new test particle is selected among tie- 1 particles. The configuration is accepted or if unbiased insertion/deletion
corresponding selection probabilitN¢1)"! must not be moves are implemented.

taken into account in tha priori probabilitiesb!! because it In order to check that the residence weight
simply corresponds to a reversible change of the particle la-
bels. The fact that particles are not distinguishable is already

taken into account in the ideal chemical potential. is compatible with Eq(21), one will consider the two pos-
Let us now prove that the weighted detailed balali&®  sjple cases, whether the transition fraiy is a reversal or
(10)] is indeed satisfied by the residence weight algorithmnot, separately. Let us first consider that the selected configu-
The proof first requires to define the forwards and the correration leads to a reversal. This means that the trial configu-
sponding backwards weighted probability fluxes in order toration C, is not accepted. At variance with the Metropolis
make sure that the algorithmic scheme is reversible and thafigorithm, the current configuratiaf, is not forced to transit
the volume of phase space is preserved. The reversibility abwards the current configuration again, but instead, towards
the algorithm means that it is possible to generate the backhe previous configuration in the chain despite the fact that
wards chain that associates the same residence weights to ttigs configuration was only stored in memory. The system
same configurations. Let us consider that the backwards comwill finally transit to C,_; whereas am priori probability of
figurational chain has been obtained after having reversegg' was generated for the rejected trial configurat@n.
the forwards chain. If one moreover reverses each selectedne, therefore, has to introduce the bias factqffl
move and keeps unchanged the unselected trial moves the:nb’r}”/bﬂ' to correct for the forced transitions when non-

the same set & priori probabilitieso ~*, by , by ~*and of  uniform a priori probabilities are used.

acceptance rates) , a7, a7 ! is obtained which yields If the trial configuration is selected,,,,=C,/, the prob-

the same residence weights. ability flux itself does not need to be corrected : the bias

One can now rigorously define the weighted balancef@ctorr"* is equal to one. The sampling correction for the

equation[equivalent to Eq(10)] for the residence weight Non-Markovian nature of the move is entjrely included in the
algorithm: residence weight which is agaim]"*+af) ) 1.

ma=(anti+an’) 1 (22)

n

046705-6



COMPUTATION OF A CHEMICAL POTENTIAL USING A. .. PHYSICAL REVIEW E66, 046705 (2002

Let us mention that with the work-bias scheme, the gen- 0.20 . . . .
erateda priori probabilities are infinitely small numbers and
can not be easily manipulated from a computational point of
view. This is the reason why with the work-bias scheme, we 0.10 | & 4
will use the following acceptance rates

0.15 1

3 . ]
: é] 0.05
b 1 [ PR e .
anm: \/%exp— EIB(Em_ En, (23
n -0.05 ¢ 3
where the indicesn and n correspond to configuratiorn, -0.10 - - ' ' '

and C,. The previous demonstration still applies since the
modification simply results in multiplying the forwards and
barkwards fluxes in equation by the invariant quantity FIG. 1. Normalized chemical potential differeng@\u as a
\/bR*IbQH, function of B composition in a bcc Ising lattice 8t=500 K com-

Also note that the Metropolis-like formacc(n—n’) puted with the residence weight sampling schefneand with the

=min(1,aﬂ’/a271) can be used for the selection probability classical Wld_om ms_ertlon method . _The solublllty_ limit is in _
. . . agreement with previous results obtained from semigrand canonical
instead of the current Glauber-like form. A selection depen-

- . . ble simulations.
dent residence weight would then be obtained: ensemble simuations

14 16 18
B Composition (at.%)

(agﬂ)*l_ (aﬂ’)’l if reversal Cp1=Cn_1 The residence weight algorithm is implemented with stan-
= dard unbiased insertions/deletions which are sufficient to
; n—1y,-1 ( n+1y—1 ; —

minf (a, ) ".(an ) 7] other\leeCn+1—Cn,(.24) guarantee ergodicity. Chemical potentials have been com-
puted with varying the composition and constant temperature
Both residence weights are invariantrit-1 andn+1 are  T=500 K in a 32 rombohedral computational cell with the

permuted, hence this scheme also is reversible. Finally, let ugsidence weight sampling scheme and the Widom scheme

also mention that a comparative study of the numerical peradapted to the transmutation of @nparticle into aB par-

formences between the residence weight algorithm and rdicle. If Ny and Ng are the respective number #f and B

lated Boltzmannian algorithms is given elsewhgs#]. Itis  particles, then the chemical potential difference can be ob-

shown that the related Boltzmannian algorithm can, at bestained as follows with the adapted Widom scheme:

outperform the residence weight algorithm by a factor of 2 in

term of sampling efficiency. It seems that the convergence

properties of the residence weight algorithm results from the 1 Njp 1

correspondence between the reversal probability and the Me- Ap=- /_glnNB+ 1 /_g

tropolis rejection probability. The essential mathematical cri-

teria that make the Hasting-Metropolis algorithm an efficient

statistical tool should therefore be also fullfilled by the reSi'Resu“s have been d|sp|ayed in F|g 1 and ShOW that both

dence weight algorithm. These criteria are reviewed by Robnon-Boltzmannian methods yield similar values. In this sym-

ert [27] and the rigorous proof that they also apply to themetric system, the value for the solubility limit corresponds

residence weight algorithm is beyond the scope of theg the intersection with the composition axis, and, is about

present article. 15.3%, in agreement with a previous result obtained from
semigrand canonical ensemble simulatip82].

lll. SIMULATIONS In order to complete the practical validation of the resi-
dence weight algorithm, we now have to check that this al-
gorithm can be implemented with rather general biased

We compare the residence weight sampling scheme to thglonte Carlo schemes. The residence weight algorithm has
Widom scheme in a case, where transition probabilities ar@een implemented with configurational-bias insertions/
high in order to give a practical proof that the algorithm is deletions. With the configurational-bias scheme, ahgriori
correct. We have thus considered a body centered cubic Isingrobability of an insertion is not univocally determined by
model with an ordering enthalpy af=—30 meV (phase the way the deletion is carried out at variance with the work-
separation The internal energy of thidB binary Ising sys- bias scheme considered thereafter. Computation are carried
tem is: out at the composition of 10% &8.and at the temperature of

an T=500 K. Series of 19trial insertion/deletions were gener-
By _ BB ated and 10 parallel insertions were used in the

E(n )_Ji%i nny (25 configurational-bias Monte Carlo scheme. We foudd

=0.19970.0013 in agreement with the simulations carried
wheren; is 1 or 0 depending whether sités occupied by a out with unbiased insertion/deletions. The use of a biased
B atom or not. The summation runs on all nearest neighbomnsertion scheme thus does not affect the value measured
pairs only. with the unbiased scheme.

In{exp— B(E*—E%)),. (26)

A. Ising system
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B. Lennard-Jones system 9 v . .
To illustrate the usefulness of the residence weight sam- i " T
pling method, a more relevant problem will now be investi- 1f & g
gated: computing the excess chemical potential of a three- o
dimensional Lennard-Jones fluid at relatively high density 0k o |
and low temperature. We have used as a benchmark, the case
study in Ref.[17] and thus implemented the same set of
potential and simulation parameters. The usual Lennard- -1r i
Jones interaction potential, for a pair of particles separated “
by a distance, is given by 3 9t | -
Q.
Jua(r)=4e[(olr)?=(alr)®], (27)
3t -
wheree is the depth of the potential at its minimum, amds 0
the van der Waals diameter of the particle. A modified poten- 4+t .
tial was instead used O RWA ¢
5 Insertions +
a—br? 0<r<0.8¢ Deletiogg o
i} -
Jn={ Juyr)+c(r-ro—d 0.8xo<r<r, (29 6 AL L
0 ro<r, 102 100 10* 105 10% 10" 108
M
where the cutoff distance, is taken to be half the length FIG. 2. Normalized excess chemical potentiat,, as a func-

of a side of the computational cell and the cons@nb, C,  ion of the number of switching stejps computed by means of? ,
andd are chosen to preserve the continuityJo&nd its de-  yesigence weight sampling:, the test insertion method; arid,

rivative. The sizeL of the computational cell is 580, the  the test deletion method.
temperaturee/kg and the number of particle, 125.

The cell is equilibrated by performing Monte Carlo ran-  From the displayed data, it is observed that the estimated
dom particle displacements at the temperature/&f, untii  chemical potentials using the test insertion or the test dele-
the internal energy stabilizes. The final configuration is takeriion methods agree when the number of intermediate steps in
as the starting configuration for the subsequent study. Pathe work-bias scheme is larger thar1The obtained value
ticle insertions and deletions are realized using the work-biats also in agreement with the estimated chemical potential
Monte Carlo scheme detailed in the Appendix B. Mean acfrom Ref.[17]. Since Ref[17] utilizes a constant tempera-
ceptance rates of about 50% were used for the particle digure molecular dynamics scheme that has the advantage of
placements inside the work-bias scheme and the simpleeing much faster, but that is not, strictly speaking, revers-
choiceN,=n/M is made for the coupling parameter. Simu- ible, our Monte Carlo simulations justify the approach fol-
lations are carried out with various insertion ratés=10*,  lowed in Ref.[17].
10°, 2x10°, 5x10°, 1CF, 2x 1P or 5x 10° (the number of When the numbemM of switching steps is not large
trial relaxation steps in the work-bias schemeMs-1). enough M=<10°), the amount of work which is introduced
However, the product of the number of residence weight
St_eps(total number of trials insertion a_md deletiorisy M dence weights and obtained by grouping the simulation data in
will be constant and_equal to 10 This means that the . blocks of various lengths ¢, is calculated using ¥((7)-values
amoun.t of computer time devoted to each simulation run '%veraged over & 10/ M trial deletions D or insertions |.
approximately constant.

TABLE Ill. Standard deviations computed for the mean resi-

Estimated chemical potentials obtained using the test in- M Buex (7 o3 oy oy
sertion, test deletion, and residence weight methods are dis
payed in Fig. 2. Data are plotted as a function\f the D 10* 0.158  6.10 1.36 0.45 0.15
number of switching steps in a work-bias move. Table IlI1 10* 7.14 45.94 14.44 1.79
yields the standard deviations for the computed mean resb 10° 1162 1.34 0.58 0.19 0.05
dence weight. The dotted lines in Fig. 2 indicate the lowen 10° 4.28 13.68 4.34 1.17
and upper estimates of the chemical potential computed iD 2x10° 1.200 0.867 0.428 0.134 0.041
Ref.[17]. Figure 3 yields the mean acceptance rates both for 2X10° 2.88 3.281 1.186 0.243
the trial insertions and deletions in the residence weight samp 5x10° 1.251 0533 0.269 0.0948 0.0335
pling procedure. Figures 4 and 5 display the wav " or | 5% 10° 1.863 1409 0508  0.179
Wﬁ,ﬁo required to insert or delete the test particle using thep 1P 1.181 0.426 0.185 0.0701 0.0194
work-bias Monte Carlo scheme witd =10°> andM=10°, | 10° 1.356 0730  0.291  0.0845
and computed for a set of random trial insertions or delep 5x10° 1198 0.305 0.1852 0.0701 0.0194
tions. The estimated chemical potential is inserted in dotteg 5% 10° 1.356 0.729 0.2913 0.0845
lines.
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FIG. 3. Mean acceptance rates for accepting the trial insertions +
¢ or the trial deletionst obtained with the residence weight al- 6 . , . . , . , . .
gorithm as a function of thé parameter. 9 3 4 5 6 7 & 9 10 11 12

ﬂwll—m
into the system during a particle insertion “almost always” _ 01 e
outpasses the excess chemical potential. This means that trlel';G' SM Nolrgahzed ";’orKG_WM . ﬁfte_r M S‘lw'tCh'”gl_ Stzps \
Boltzmann weight of the trial configuration with respect to or M= Ollas a 11mct|(§)n of the Initial normalized energy
the Z; ensemble is extremely small. As a result the sampleéj'ffer.e'ncesﬁWl = B(Eo—Eo) for a set of 200 random particle
- . . deletions.
configurations of theZz, ensemble are not generated in the

peak of the p_robability distribution function and the mea’ensemble(respectivelyzo ensembl is adequatly sampled
sulred Valge.l's rr;]eanlngless ar|1(d ovlerestlmitei the ?ﬁaﬁhd the estimated value is correctly sampled. In such a case,
value. A similar phenomenon takes place with the particlgy,o quantities measured with either the test insertion or the
deletion method, however, the measured value underestizs; deletion methods agree.

mates the exact excess chemical potential. When the test ¢qncering the results obtained by residence weight sam-
particle is sufficiently slowly insertetrespectively deletod  ing it is observed that the estimated chemical potentials lie

the peak of the probability distribution function of t#& j, petween the estimations given by the test insertion and the
test deletion methods. This fact can be intuitively understood

450 since the residence weight ratio yielding the chemical poten-
tial depends on both the way particles are inserted and de-
400 1 7 leted. Moreover, from the displayed simulation data in Fig. 2,
a50 | | it is observed that a correct estimation is obtained using the
o residence weight algorithm whéi) the test deletion and test
300 + ] insertion method yield similar result$i) the mean accep-
tance rate for accepting the trial insertions with the residence
250 | . weight algorithm is greater than 10%. Poiit results from
is the fact that the chemical potential estimated from residence
=200 ¢ 1 weight sampling lies between the two estimations given by
. the test insertion and test deletion methods and from the fact
150 i that the two latter methods, respectively, overestimate and
100 b | underestimate the exact chemical potential. In order to ex-
plain point(ii), let us consider that the number of switching
50 | 1 stepsM is not large enough. Then the particle insertions are
not accompanied by an efficient relaxation as can be deduced
O -t bsn 1 from Fig. 4. Even though a first move is accepted, the algo-
rithm is likely to perform a reversal at the next step since it
=0 100 200 300 400 8500 6o Wil have to choose between the old configuratibn; and a
WD new trial configuratiorC,, with two additional high energy

defects. The first one corresponds to the badly inserted par-

FIG. 4. Normalized workBW 9! after M switching steps M ticle and the second one corresponds to the void or distortion
=10° or M=10°) as a function of the initial normalized energy left by the particle deletion. With increasing the number of
differencesp$ 1= B(E;—EJ) for a set of 200 random particle switching steps during the particle insertions and deletions,

insertions. the introduced distortions become less important and the
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mean acceptance rate increases as observed in Fig. 3. It re- APPENDIX A: GRAND CANONICAL ENSEMBLE
sults that when the acceptance rates are high enough, alarger.l_he rand canonical partition function of a svstem of
amount of the computation is invested in generating uncorz, . 9: tenti | P y tained i bi y Il of
related configurations and bolty andZ, ensembles can be chemical poten laj, volume v, contained In & cubic cell o
explored adequately. At variance, a large amount of reversa@dgel‘ and with scacled particle coordinats§ is given by
implies that the explored configurations in eitlgror Z, are * expl BuN)VN (1 N
extremely correlated. This means that in the residence weight Q(u,V,T)= > ;J o f dgV
sampling method, a weak convergence expresses itself by a N=0 APNNI 0 0
large number of reversals.

In the limit where work-bias Monte Carlo moves are car- xexp- BE(SL), (A1)

ried out infinitely slowly, the scheme corresponds to a ther- N . . . .
modynamic integratiofi15,17. It implies that if the work- whereE(sV;L) is the internal energy of a configuration with

bias scheme is performed sufficiently slowly, the meanl\I particles. The corresponding probability density is

acceptance rate for insertions or deletions will always be- exp BuN)VN
come substantial and the free energy difference will be ad- o ———————
equately estimated in a single run. This property remains true ANN!
even though the partition function rati®, /Z, span many ) . o )
orders of magnitude because acceptance rates always deper first Monte Carlo simulation in the grand canonical en-
on Boltzmann ratios of two configurations belonging both toS€mble has been carried out by Norman and Filif&8].

the same subensemble, eiti&y or Z,. The only ajusting

parameter is the number of switching steps to perform with APPENDIX B: WORK-BIAS MONTE CARLO SCHEME

the work-bias scheme. This preliminary task is also present
In th? methodlof expanded ensembles Wh.'Ch requires to d(?ﬁethodology for computing free energy differences by
termine the minimum number of intermediate ensembles t?n

subsequently sample. However the advantage of the resii€ans of various stochastic processes that sastify a weak
quently pie. H N ge : detailed balance condition. If we assume that the basic sto-
dence weight algorithm is that it does not require to itera-

tively construct whatever expanded ensembile, i.e., to find thChaStiC process of the fast-growth method is a Monte Carlo
adeyuate set of “e uiIibriumF')’ balancin factoré .THis racti- rocess, Crookg29] has shown that *macro moves” can be

q q . ng . Practl yefined which satisfies a stronger condition of detailed bal-
cal advantage of the residence weight sampling techniqu

; . T . AU nce (microreversibility or “superdetailed balance” in the
makes it possible to obtain direct convergence in the G'bbﬁ/lonte Carlo language

ensemble~. this would rgquwe 0 rep"?‘Fe the dual canonica The fact that the stronger condition of “superdetailed bal-
ensembleZ by a dual Gibbs ensemblé=G,+G; where  gnce” holds allows us to use the macro movesw called
Go andG; are two Gibbs ensembles differing from one test«york-hias” moves with a residence weight algorithm or
particle. with a Metropolis algorithm. Let us also assume that the
work-bias scheme is aimed at inserting a test particle. This
scheme enables to compute the chemical potential by means
IV. CONCLUSION of residence weight sampling or to explore open ensembles
We have proposed to use a specific residence weight afWith varying number of particlossuch as the grand canoni-
gorithm to compute a chemical potential in combination with¢al ensemble with the Metropolis algorithm. In this appen-
the test insertion method and various biased schemes for ifiX, we describe the “work-bias Monte Carlo scheme” in the
serting and deleting the test particle. Since the work-biagramework of the Metropolis algorithm. Considering the Me-
Monte Carlo scheme considered in this paper also appears teppolis algorithm will makg it easier to exhibit the revers_lble
be an efficient tool for performing insertions, deletions orhature of the process outlined by Crooks. Moreover, this ap-
exchanges in dense systems, its implementation with theroach will _aIso enable us to mention the analogies and dif-
residence weight sampling method yields a general methodérences with both the method of expanded ensembles and
ology enabling to compute free energy differences. The maithe configurational-bias scheme.
advantage of the present methodology is that it possesses a
built-in diagnostic tool that allows to optimize the conver- 1. Expanded ensemble

gence of the estimated value towards the exact free energy The work-bias Monte Carlo move consists in allowing the

difference. gradual insertion or removal of the test particle. A coupling
parametern for this “phantom” particle is thus introduced
and is first assumed to be an ensemble variable. One also
defines a set of M increasing values A

| am much indebted to D. Frenkel for relevant comments={Xo, ... An, ... Ay}, wherexo=0 and\ =1 mean that
in particular on the “work-bias scheme” and on its connec-the particle is entirely decoupled or entirely inserted in the
tion to related methods. Fruitful discussions with J.-L. Boc-computational cell, respectively. The partial excess chemical
quet, D. Ghaleb, Y. Limoge, G. Martin, and T. Vlugt are alsopotentialsu;*=\,uc, are also introduced in the expanded
gratefully acknowledged. partition function:

exp— BE(sV;L). (A2)

Jarzynski's fast-growth methofdl5-17,34 is a general
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m=M entirely decoupled or coupled are monitored after each at-
Q= Z meexp,B,uﬁX, (B1)  tempted particle displacement. The interaction energy of the
m=0 phantom particle with the other particles afferattempted
h is th ical ition f . ¢ displacements ang@ partial transformations equalrsp(E;
whereZ, is the excess canonlca_ partltlon _unctlon 0 an_Eg): X, is the value of the coupling parameter affer
ensemble at temperatufeand containing particles and an - yransformationsig andE}, are the corresponding configura-
additional phantom particle with coupling Paramete{]. tional energies of the system assuming that the phantom par-
Using the notation already mtroducdﬁ‘? andE" correspond  icje is entirely decoupled or coupled, respectively. The sys-
to the configurational energy with the phantom particle €ntem internal energy after the displacements angd partial
tirely decoupled or entirely inserted, respectively. Since theiransformations(i.e., afterp switching steps at the 2th
interaction energy of the phantom particle with the normal ; _ =0 1_ 0
particles is\,(E'—EP), the total internal energy i€’ step, 15E5p=Ep+A,(E, ~Ep). At the (2p+1)th step an
T (E Eo)m ' additional displacement has been tried which implies
m\= =) N . Eopi1=EC, + N (EL, ,—EC. ) with E,,,1=E,, in case
The evolution rules in this expanded ensemble comprls%zgalial d'ijs+pllacepr$1e?;trlhas %*elgn rejecté?:lﬂ 2p

ﬂ;]e usuaIThpartche ttnal d|sptI)acb§|r_'rtwe?ts thanld ttad(t:h.tlcl)mal Now that these preliminary definitions and considerations
iC anges. the acceptance probability for the fatier trial MOVeR,, /e peen given, it is possible to give a precise computa-
S tional description of the work-bias scheme:
o 1 o (i) randomly select the location of the particle to insert
ACOAm— A=) = MIN(L, €Xp~ AL (A1~ Am) (BT E7) and computeE} and EJ the energies after and before the
+ s = ). (B2)  insertion.
(ii) IterateM — 1 times the two subsequent stepsstarts
The method of expanded ensembles is essentially an iter#0m 1). _
tive weighing procedurg20,21,23 aimed at finding the set (& Increase the coupling parameter frokp_; to A,
of partial excess chemical potentials, assumed to be the aéSWitching step o
justable parameters, that permits the uniform sampling of the (b) generate a random trial displacement to a randomly
intermediate stages of the expanded ensemble. Howevei€lected particle, compute the energy variatidrE,
since only the chemical potentials of the fully inserted test=E2n-1—E2n—2, the forwards and backwardspriori trial
particle is of physical interest, one can introduce macro biProbabilities, decide to carry out the move or not. In case the
ased Monte Carlo moves transiting directly frap to Z, ~ Move is rejected, res@h,_; to Epy_», Epto ER_;, andEj
and vice versa. The proposed modification consists in incorto E,l],l.
porating features from biased Monte Carlo methfgls (ii ) Increase the coupling parameter fromg_1 to Ay .
(iv) Accept or reject the whole procedure using the fol-

2. Formulation of biased Monte Carlo moves lowing acceptance probability:

The intermediate sampling stages can be removed if one
formulates “macro” Monte Carlo moves allowing to transit aco(0—1)=min(1, exd — BWY 1+ Bueyl), (B4)
directly from\y=0 to \,=1 or vice versa.
The macro Monte Carlo move, as proposed by Jarzynski
[15,16), breaks down the generation of the trial configurationyhere
in 2M —1 steps. These steps alternatively consist in slowly
transforming or relaxing the system. For this purpose, the

\-coupling parameter of the expanded ensemble method is M
forced to always increas@r decreasein the predefined set W&Hl: E ()\n—)\n_l)(Eﬁ_l— Eﬂ_l). (B5)
of M increasing values\ ={\g, . .. Am, ... Ay} n=1

The pth relaxation step is a particle displacement which
can be either biased or unbiased but which is performed
while keeping constant the value as in the method of ex-
panded ensemble. If the forwards and backwaadgriori
trial probabilities associated to the move dfgandd, then
the acceptance probability for the move is

Within this macromove, the intermediate Metropolis ac-

ceptance rates for the transitions have been transfered into

the correcting bias of a Monte Carlo “macromove.” The
acceptance barrig8)Vy, ! indeed corresponds to the sum-
mation of the barriers associated to tfldmposed gradual

transitions as given by E@B2). Since the acceptance prob-

, (B3)  abilities of theM—1 trial particle displacements have al-
ready been accounted for by the inside accept/reject proce-
dures, their associated acceptance barriers do not appear in

where AE, is the energy variation associated to thth Eq. (BY).

move. Thepth gradual transformation step consists in in- This scheme can be immediately transposed to the grand

creasing the coupling parameter frorg_, to A,. The con-  canonical ensemble. In the grand canonical ensemble the cre-

figurational energies of the system with the phantom particlation of a (N+ 1)st particle is accepted with a probability

dO
= min( 1,d—f exp— BAE,
p
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weights before and after the transition. One has to prove that
1, exp,B[—Wf\’,ﬁlJrM]) both probabilities(B6) and (B7) are compatible with Eqg.
(N+1)A3 (B9). This can be done by introducing the following back-
(B6)  ward's probability flux fromC; to Cy:

acc(0—1)=min

and that the associated deletion of one of thet(@) par-

ticles is accepted with the probability K(1-0)=P,bPaco(1-0) 610
(N+1)A3 and by checking its equality with the corresponding forwards
aco1—0)= min( 1 expBl— Wiy °— M]) , probability flux K(0— 1), following Ref.[29].
v (B7) The demonstration thus requires to define the appropriate

sequence of backwards displacements. It is obtained from the
forwards displacement sequence taken in the reverse order.
One proposes for thath backwards trial particle displace-
duent the opposed displacement corresponding to Me (
—n)-th forwards trial particle displacement if the latter one
had been accepted. If it had not been acceptedytindack-

The equivalence between the acceptance probabilities iwards trial displacements and thé{-n)th forwards are

Egs. (B4) and (B6) simply results from the relationship be- identical. We define ad, andd, thea priori forwards and

tween the chemical potential and the excess chemical poterti’—a_Ck‘"’a“iIS probabilities for theth forwards move. Let us
tial write  p, the probabilty to have accepted{p,

=min[1,(d%d}exp—BAE)]} or  refused [p;=1
v — (d%d}yexp— BAE,] thenth forwards displacement. Due to
_ the condition\,, =1—\y_,, each forwards and its corre-
(N+ 1)Agexp,8,u,—exp,8,uex. (B8) sponding backwards particle displacement involve the same
\ value. The M —n)th backwards acceptance probability is
pm—n=min[1,(d}/d%) expBAE,] in case of acceptation, or
) . pm—_n=p. in case of rejection. The following property is
In order to prove that the various acceptance probabilitiegy;s always satisfied:

[Egs.(B4), (B6), and(B7)] obeys superdetailed balance, the

general principle of biased Monte Carlo schemes is first

where W1, %= — WP~ corresponds to the opposite of the

summation in Eq(B5). Note that one must also impose, for
reasons made clearer below, that the coupling parameter
sociated to the particle deletion satisfies the conditign
= 1_ )\M -n-

3. Proof of detailed balance

briefly recal_led.hA I;(Ietropolis Monte Qe}rlo mfpve cqg};i_sts in dip’ expBlES_ +\o(E:_,—ES_ )]
two parts: in the first part a new trial configuratioh is - = 0 1_0
generated with the associatadpriori trial probability b3, in Aw—nPm—n eXpBLEN T An(Er—E)]

the second part, one decides whether the trial move is ac- (B11)

cepted or not. The acceptance probability is calculated so agnce gl = El EO = E° and dy, —d!in case the trial
n— n? n— n —n n

to satisfy the detailed balance criterion move had been rejected. Note also that if the trial move had
been accepted, the backwardspriori trial probability is
Pobiacc(0—1)="P;bl%cc(1-0), (B9) different and is expressed dg_,=d?.

The definition of the reverse scheme now enables one to
where b‘f is ana priori trial probability to generate the re- derive the probability flux ratio relative to the creation and
verse move, and, and P, the corresponding Boltzmann deletion of a particle:

M-1
dl +
K(0—1) exp— BEJ nl:[:L nPn acc(0—1) 512
K(1H0)_exwﬂ5bfl M1 Jacg1—0) (B12
H dmfnPan
n=1
_ exp— BEJ i expBlE)_1+Nn-1(Ef_1—ES_ )1|expBlEY_ 1+ w-1(Ey_1—EN_1)] (B13)
exp-BEy_1| n=1  expBlEp+Ny(E;—ED] expBEy_4
=1, (B14)
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where Eq(B13) results from combining Eq$B4) and(B11) introduced or removed one after an other, interact both with

into Eq. (B12). the other polymers and with their own uncompleted chain via
When both the forwards and backwards transformationghe potential energielsﬁ’“ andugond, respectively. The for-

are of same nature, as it is the case for particle exchanges {flards and backwards relaxation stages are carried out for the

the Gibbs ensemble, the reversibility condition thus requiregame <t andU®°" values and so for the same “fractional”

Ap=1—Ay_n. Finally, let us note that the random selection .\ osition, In the work-bias scheme presented here, all the

of.a parﬂcgl'ar k'nq of transfor.manqn also |nvoIve§ @aPr- — forwards and their associated backwards relaxation stages
ori probability which was omitted in EqB14). This point are carried at the same value and hence for the same
nevertheless implies that the probability to select a transfo “ractional” composition also 'I:he formal correspondence
mation or its associated reverse of@specially a deletion P . ' t 0 P bond
and an insertionare equal. If they are not equal, as it is the Pétween both methods is expressedgs'=E” and Uy

. . A . = 1_g0
case, for instance, in an early rejection sch¢BH, the ap- =An(E°—E7). ) o _
propriate bias must be incorporated into the acceptance prob- The last mentioned property is important. Indeed, a biased
ability. Monte Carlo scheme has already been tested for oxide

It now is instructive to derive the bia§(0—1)=b%b}  dlasses[36,37 to directly minimize the internal energy
associated to the acceptanceCgfirom Cp, Wherebé and bg through a structure relaxation by repositioning the neighbor-
are the corresponding forwards and backwargsiori prob- N9 atoms. In this previous scheme, the forwards and their

abilities. The bias appears as a product of Boltzmann Weigrﬁlssocigted backwards re_Iaxation stages in the gradual_t_rans-
ratios in the expanded ensemble: formation were not carried out at the same composition,

(e.g., for the sami value, even if the backwards relaxation
sequence was determined by the forwards displacement se-
quence taken in the reverse order. This way of proceeding

M-1
B0-1)=[1 expBEq+An(Ef—ED] not only complexified the computational scheme, but was
A=1 expBlEC_;+Ny(EX ,—E° )] also responsible for the limitation of the method: the reverse

(B15) trial probability b;q is computed with the reverse relaxation
steps forced to follow a non-natural configurational pathway.
The bias hence decreased dramaticéibwards zerp with
the number of intermediate steps and deteriorated the effi-
The work-bias Monte Carlo scheme is a hybrid method: it isciency of the method. The scheme appeared to be impracti-
derived from the proven efficient method of expanded encable when applied to an oxide glass at realistic temperatures
sembles and incorporates the essential feature of bias¢d6,37.
Monte Carlo methods which makes these methods more Considering that the simulation takes place in the grand
practical and amenable to Gibbs ensemble simulations. &anonical ensemble, the data displayed in Fig. 4 show that
comparative examination between the widespreadibout 10% of the particle insertions would be accepted for
configurational-bias Monte Carlo scheme and the presenyl =10, (estimated from the number of points in Fig. 4 that
scheme may thus appear appropriate. In both the work-biagre below the horizontal dotted line representing the imposed
and configurational-bias schemes, the choice of the trial corexcess chemical potentiawhile for M=0 or M=10° the
figuration results from an energy optimization. However, theacceptance probability for inserting the most favorable trial
work-bias scheme differs from the configurational-biasparticle would be 10%° and 108, respectively. Mean ac-
scheme by the fact that the energy optimization results frongeptance probabilities increase with the length of the relax-
a full cell relaxation. This is not the case in the ation procedure. The enhancement of acceptance probabili-
configurational-bias scheme where other molecules are ndies for a given particle insertion which is gained thanks to
allowed to relax. Another difference concerns the fact thathe relaxation procedure can be directly estimated in Fig. 4.
with the work-bias scheme, the backwagdpriori probabil- It corresponds to the mean vertical distance separating the
ity is univocally determined by the forwards priori prob-  displayed data to the bisectrix. Increasing gains can be ob-
ability. This is not the case either in the configurational-biastained when the number of switching steps increases from
scheme. For instance when a molecule is remdf@avards M=10° to M=10°. It confirms that the method does not
move), the backwards priori probability must be generated deteriorate with increasing the relaxation scheme and that the
a posteriori by tracing back the molecule. Many different gain outpasses, by far, the additional computation cost re-
ways exist to trace back the molecule with thequired by the biased scheme. Since the energy evaluation
configurational-bias method. during a particle displacement consumes the largest part of
Nevertheless, the work-bias and configurational-biasomputational time, the additional cost of a work-bias move
schemes share an essential property. Let us for instance cotan be estimated as 3 and 6 orders of magnitudeMor
sider that a polymer chain is to be inserted or deleted with=10° and M =10°, respectively, with respect to the time
the configurational-bias scheme. Polymer beads, which anequired for the direct particle insertion.
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