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Computation of a chemical potential using a residence weight algorithm

M. Athènes*
Service de Recherches de Me´tallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette, France

~Received 7 May 2002; published 28 October 2002!

The test particle insertion method and its generalization to biased insertion schemes allows the computation
of chemical potentials in fluids. Even though these techniques can be implemented in dense systems, the
convergence of the estimated value for the chemical potential must be carefully checked and additional
simulations are actually required. We propose to compute the chemical potential using a residence weight
algorithm. With this algorithm, it is shown that, for a given amount of computer time, the degree of conver-
gence towards the exact chemical potential correlates with the mean rate for accepting the trial particle
insertions or deletions. The residence weight algorithm thus offers a reliable built-in tool for diagnosing the
numerical convergence.
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I. INTRODUCTION

The estimation of free energies in solids and liquids
means of atomistic computer simulations is of central imp
tance in practical problems involving the calculation
phase coexistence conditions. For instance, the computa
of chemical potentials and solubility limits in silicate-bas
nuclear glasses is a challenging technological task requ
by nuclear waste management programs. The three las
cades have witnessed the development of numerous M
Carlo simulation tools for measuring thermodynamical ph
quantities@see the recent review book by Smit and Fren
@1##.

Monte Carlo sampling of a given configurational spa
@2# consists in constructing a configurational chain by me
of a stochastic process for which the evolution rules are
godic and obey detailed balance. These two conditions in
that the chain converges towards the equilibrium Boltzma
statistics. Detailed balance is usually imposed because
in practice, a convenient way to insure that the sampl
scheme leads to the equilibrium statistics. However, it i
sufficient but not a necessary condition.

Since phase coexistence implies the equality of chem
potentials between coexisting phases, two approaches sea
priori possible:~i! chemical potentials can be computed fo
series of compositions~or densities! in order to construct the
eventual free energy basins from which coexisting comp
tions can be deduced using the double tangent rule;~ii ! com-
positions and densities can be estimated for a serie
chemical potentials in order to locate an hysteresis loop
the composition-chemical potential plan. The methods of
first approach consist of computing the free energy diff
ence between two canonical ensembles differing by only
‘‘test’’ particle and are based on Widom’s test inserti
method@3#. At variance, the various methods of the seco
approach involve moves performed at imposed chemical
tentials, such as particle deletions, insertions or transm
tions, which means that simulations are carried out in
grand or semigrand canonical ensembles.
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The disadvantage of all mentioned techniques is tha
erative computations are necessary so as to accurately lo
the equilibrium conditions between two coexisting phas
That is the reason why a third approach has been develo
that consists in simulating in the Gibbs ensemble@4#. For the
general case ofc coexisting phases, the Gibbs ensemble
proach considersc separate computational cells. Couple
Monte Carlo moves are then performed between two r
domly chosen cells so that both chemical potentials and p
sure are not needed to be specified. For instance, if a par
is deleted from one cell, then the same type of particle w
be inserted in an other cell. Similarly, a volume variationDV
in one cell, is carried out in parallel with a volume variatio
2DV in an other cell. During a single Gibbs ensemble sim
lation, it has been demonstrated@5# that compositions and
densities for each cell must converge towards the equilibr
values of a different phase. The computation of chemi
potentials can be carried out in the course of the Gibbs
semble simulation.

Implementing whatever method of the three mention
approaches implies that one is able to insert or delete
given type of particle. This point is problematic since
dense phases, there is no space to insert an additional pa
or, similarly, deleting a particle generates too much distort
in the system~creation of a high energy cavity!. We briefly
review the various techniques that have been develope
circumvent this difficulty.

With the methods of the second and third approaches,
acceptance probabilities are so small that, in practice, tra
tions can never be accepted. Biased Monte Carlo meth
such as the configurational-bias scheme@6# and the recoil-
growth scheme@7,8#, allow to solve the insertion problem in
moderately dense polymeric systems. These biased par
insertion schemes generate energetically favorable trial c
formations using a probabilistic procedure aimed at minim
ing the energy of the molecule to insert.

A similar difficulty appears with the techniques of the fir
approach. When the test insertion method is implemente
too dense a system, the Monte Carlo sampling proced
does not converge and the values measured for the chem
potentials are meaningless. To accelerate the converge
the biased Monte Carlo methods mentioned above have b
©2002 The American Physical Society05-1
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used for inserting the test particle. The improved version
the Widom method that uses the configurational-bias in
tion scheme@9,10# is called Rosenbluth sampling and a
pears to be an extension of an earlier scheme based o
generation of biased polymer conformations@11#. The test
insertion method can also be implemented with the rec
growth insertions. This method can be considered as the
namical extension of related static and recursive sche
@12–14#. A similar approach suited to nonpolymeric system
would consist in implementing the ‘‘fast growth’’ metho
@15,16# in combination with the test particle insertio
method. This combined technique@17# indeed consists in
substituting a ‘‘work-bias’’ scheme for the configurationa
bias or recoil-growth schemes of the previously mention
techniques. The work-bias scheme consists in gradually
troducing or deleting the test particle while reversibly rela
ing the system. This technique thus appears as the dynam
extension of the ‘‘static’’ thermodynamic integration meth
@1#. The advantage of work-bias over configurational-bias
that arbitrarily dense systems can be sampled adequate
enough computational effort is invested in sufficiently slow
inserting the test particle.

The main limitation of all the mentioned techniques
that no built-in diagnostic tools are available to check
convergence of the estimated free energy difference
careful analysis of the result is ultimately required. Diagn
ing the numerical convergence of the chemical potential
tually requires to carry out a series of simulations. For
stance, the overlapping distribution method@18# and the
acceptance ratio method@18# compare the results of two
simulations: one where the test particle is inserted, and
other one where it is deleted. The last technique will
referred to as the test deletion method. Other examples
the umbrella sampling scheme@19# and the method of ex
panded ensembles@20#, the latter method having been su
cessfully applied to the particle insertion method@21–24#.
They, however, compute the desired free energy differe
by means of an iterative weighing procedure. A related d
advantage of the expanded ensemble method is that it is
immediately amenable to the Gibbs ensemble@25,26# unlike
the test insertion method and its extention to biased Mo
Carlo schemes.

The aim of the present article is to propose a method
computing free energy differences that possesses a bu
tool for diagnosing the convergence of the estimated va
The article is organized as follows: The test insertion meth
is first derived from a purely deductive point of view so as
introduce a modification to it. The proposed algorithm is th
implemented and numerically validated in an Ising syst
with both unbiased and configurational-bias insertio
deletions. Then, in order to show the usefulness of the p
posed technique, a Lennard-Jones system at low temper
and relatively high density will be considered which requir
to implement the work-bias scheme. It is then practica
demonstrated that accurate measurements can be obtain
a simple criterion is fullfilled. The various techniques th
will be considered in this study are summarized in Table I
description of the the work-bias scheme and a demonstra
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of its compatibility with the principle of detailed balance
also given in Appendix B.

Preliminary definitions

The system that will be used in the applicative part of t
present study will be either a binary Ising system or an un
Lennard-Jones fluid. However, to simplify the presentat
of the theory, we can first assume that the system cont
one type of particle~the Ising system can be considered a
lattice-gaz model!.

Let us consider a system ofN particles and volumeV. We
assume that the system is contained in a cubic cell of edgL
and writeE(rN) the internal energy of a configuration whe
the 3N vectorrN corresponds to the particle coordinates. T
configurational energy is described by the pairwise inter
tion potential:

E~rN!5(
i j

J~ ur iÀr ju!, ~1!

where the summation runs on all particle pairs andur iÀr ju
corresponds to the distance between particlesi and j.

Let us introducesN the scaled particle coordinates wit
respect to the cell sizeL andE(sN;L) the internal energy of
a configuration. Since only one type of particle is present,
canonical partition function of the system is given by

Q~N,V,T!5
VN

L3NN!
E

0

1

. . . E
0

1

dsNexp2bE~sN;L !, ~2!

whereb51/kbT is the inverse temperature andkb is Boltz-
mann’s constant. The kinetic contribution corresponds
1/L3N, where L is the de Broglie wavelength (L
5Ah2/2p mkbT), m is the particle mass andh Planck’s con-
stant. Let us also introduce the ideal gaz partition functio

Qid~N,V,T!5
VN

L3NN!
, ~3!

which corresponds to the partition function of an ensem
of N noninteracting particles contained in the volumeV and
at temperatureT. The free energy is deduced from the par
tion function:

F~N,V,T!52
1

b
ln Q~N,V,T!. ~4!

The chemical potentialm corresponds to the free energy d
rivative with respect to the number of particle and can
obtained from the differenceF(N11,V,T)2F(N,V,T), if N
is large enough. It is also convenient to express the chem
potential as the sum of an ideal contributionm id and of an
excess chemical potentialmex . The two contributions are
defined as follows :

m id52
1

b
ln

Qid~N11,V,T!

Qid~N,V,T!
52

1

b
ln

V

L3~N11!
~5!

and
5-2
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TABLE I. Available interrelated techniques to compute the mean number of particles^N& in the grand
canonical ensembleQ(m,V,T) or the chemical potentialm521/b ln@Q(N11,V,T)/Q(N,V,T)#. The quan-
tities ^RM&0 and^W M

0→1&0 correspond to the averaged Rosenbluth and the work factors, respectively, aM
to the number of parallel beads inserted in parallel or to the number of switching steps, correspondi

Low density systems
Quantity to estimate Techniques

^N& Classical unbiased insertions/deletions and particle
displacements and additional particle displacements

mex52
1
b

ln^exp2b(E12E0)&0 Widom test insertion method in theQ(N,V,T)
canonical ensemble

Intermediate molecular systems
Quantity to estimate Techniques

^N& Configurational-bias insertions/deletions
and additional particle displacements

mex52
1
b

ln^RM&0 Rosenbluth sampling: Widom method with
configurational-bias

test insertions inQ(N,V,T) ensemble

High density systems
Quantity to estimate Techniques

^N& Work-bias insertions/deletions
-

mex52
1
b

ln^W M
0→1&0 Fast-growth method: work-

bias test particle insertions
n
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mex52
1

b
ln

Z1

Z0
, ~6!

where Z0 and Z1 corresponds to some ‘‘excess partitio
functions’’

Z05
Q~N,V,T!

Qid~N,V,T!
~7!

and

Z15
Q~N11,V,T!

Qid~N11,V,T!
. ~8!

The configurational internal energies corresponding toZ0
and Z1 are defined asE0 and E1, respectively. Note that
unlike Q(N,V,T) andQ(N11,V,T), Z0 andZ1 contain dis-
tinguishable particles. The excess partition functionZ0 and
Z1 differ from only one labeled particle, often called the te
particle as in the Widom method. The energyDE15E1

2E0 experienced by the test particle can be easily obtain

DE15(
j

J~ ur 1Àr ju!, ~9!

whereur 1Àr ju corresponds to the distance separating the
particle to thej th particle of systemZ0.
04670
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II. METHODS

A. Test insertion method

A purely deductive approach is adopted to derive the
insertion method@3#. Its modification/extension indeed re
quires, as a preliminary, to rigorously define the conditio
of detail balance that prevail in this non-Boltzmanni
method.

In non-Boltzmannian sampling schemes, a weighttn is
attributed to each configuration of the configuration chain
as to correct the sampling scheme in such a way that
backwards and forwards weighted probability fluxes betwe
any two consecutive configurationsCn andCn11 of the chain
are always equal:

1

tn
Pna~n→n11un21!5

1

tn11
Pn11a~n11→nun12!,

~10!

wherePn andPn11 are the Boltzmann weights of theCn and
Cn11 configurations, a(n→n11un21) is the transition
probability fromCn to Cn11 knowing that the system was i
Cn21 before. Similarly, for the backwards chain,a(n11
→nun12) is the transition probability fromCn11 to Cn
knowing that the system was inCn12 before. The sampling
‘‘weights’’ tn and tn11 can be interpreted as follows: if
weight of one is attributed to configurationCn , then the se-
lected configurationCn11 must be given a weight oftn11 /tn
so as to account for the nonarea preserving transition. It
5-3
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lows by induction that Eq.~11! leads to a correct samplin
scheme for the evaluation of a physical quantityA:

^A&t5

(
i 51

N
t iA~ i !

(
i 51

N
t i

. ~11!

The weighted detailed balance condition~10! insures a
convergence towards the equilibrium statistics which is,
the general case, much weaker than the convergence o
Hasting-Metropolis algorithm@27#. This is the case for ran
dom sampling or random walk sampling of a given integ
~partition function! which are poorly converging statistica
schemes, and, unfortunately, the test insertions of the Wid
method are based on such a random sampling scheme.

The test insertion method consists in directly extract
the chemical potential from the partition function ratio giv
by Eq.~6!. This ratio is obtained by means of a Monte Ca
sampling of the dual ensembleZ̃5Z01Z1. One Monte Carlo
step consists in implementing one of the three poss
moves defined below for the stepn: if configurationCn be-
longs toZ0, with probabilityp, a standard Metropolis mov
is carried out fromZ0 to Z0, or with probability 12p, a
random transition~insertion! towardsZ1 is performed which
requires to correct the weight of theZ1 configurations by a
factortn

1 specified below; if the configuration belongs toZ1,
a move towardsZ0 is carried out. This again requires t
update the sampling weight of the final configuration.

Ergodicity is guaranteed by the standard Metropo
moves. The sampling weighttn

1 is derived from the weighted
detailed balance Eq.~10! and can be expressed as follows

tn
15~12p!21

bn
id

bn
Q

exp2b~En
12En

0!, ~12!

whereEn
0 is the internal energy of configurationCn andEn

1 is
the internal energy after the test particle has been inse
the weight of the initial configuration is one;bn

Q is the a
priori probability to insert a particle with respect to theQN

canonical ensemble;bn
id is the associateda priori probability

relative to the ideal gaz of~noninteracting! particles. In prac-
tice, bn

Q is actually generated andbn
id is computeda poste-

riori . The probability ratiobn
id/bn

Q corresponds to a norma

izeda priori probability with respect to theZ̃ ensemble. The
fact that thea priori normalized probability for the particle
deletion is one, implies that this Monte Carlo move inde
corresponds to the imposed test particle removal of the
dom method. This transition requires, as a result of Eq.~10!,
to reset the configuration weighttn11

0 to one. Since the sub
sequent configuration weightstp

0 (p.n11) associated to
the Metropolis moves fromZ0 to Z0 always remain equal to
one ~they must be taken into account!, the stability and the
reversibility of the sampling scheme is insured.
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The cumulated weightt(1) @respectivelyt(0)] is incre-
mented bytn

1 @respectivelytn11
0 ] each timeZ1 ~respectively

Z0) is visited. The chemical potential is obtained from t
following equation:

mex52
1

b
ln

t~1!

t~0!
, ~13!

where the hidden factor (12p)21 in t(1) corrects for the
fact that transitions towardsZ0 are carried out more often
than the random test insertions towardsZ1. Removing the
bias (12p)21 associated to the asymmetric sampling ofZ0
1Z1 yields a statistically equivalent formulation for lon
runs, expressed as follows:

mex52
1

b
lnK bn

id

bn
Q

exp2b~En
12En

0!L
0

, ~14!

where ^(bn
id/bn

Q)exp2b(En
12En

0)&0 corresponds to a mea
value for the test insertion procedure during the simulati
This way of proceeding corresponds to the original Wido
scheme if the test insertion is unbiased (bn

id5bn
Q).

The Rosenbluth scheme consists in substituting
configurational-bias particle insertions~where bn

id/bn
QÞ1)

for the unbiased test insertions~wherebn
id5bn

Q). Note that if
the particles possesse internal interactions, the ideal chem
potentialm id must be carefully and rigorously defined an
then computed in a separate run@28#. With the Rosenbluth
scheme, test particle removals are unbiased and thus c
cides with real Monte Carlo moves. However, since thea
priori probability to reinsert the test particle can not
univocally defined from the way the particle is deleted, t
transition corresponding to the test particle deletion requ
informations about the way the previous move was carr
out so as to reset the configuration weight to one. Ev
though the sampling step corresponding to the particle d
tion can be considered as a kind of non-Markovian move,
correcting bias which has been introduced guarantees
the reversibility and the conservation of phase space du
the sampling process.

In the two mentioned examples, the particle deletion
incides with a move carried out with ana priori probability
of one. However, this is not a necessary condition. The p
ticle deletion itself may result from a forced transition corr
sponding to a biased move. The scheme is correct as lon
the move is adequately accounted for in the sampling proc
by an additional correcting factor. This factor corresponds
an a priori probability bn

2Þ1 for removing the particle and
can be formally derived by means of an appropriate pa
function average taken over the path ensemble connectinZ0
andZ1 @29#. The additional correcting factor is then incorp
rated into the configuration weight

tn115~12p!21
bn

2

bn
1

exp2b~En
12En

0!, ~15!
5-4



s

e-

se
te

t
p

s

ts

le

th

n
rm
-

ee

ay
he
m
ad
li

n
e

nd
ep
-
f

b

ccu-
-
m

ti-
but
ute.

s

ion

e
to

ing
trial

-

ext
that
in
the
-
c-

his
en-
ro-
e
nce
the
and

ill
ual

m-

es

COMPUTATION OF A CHEMICAL POTENTIAL USING A . . . PHYSICAL REVIEW E66, 046705 ~2002!
wherebn
1 andbn

2 , thea priori probabilities for inserting and

deleting the test particle are generated with respect toZ̃. The
Widom method then becomes

mex52
1

b
lnK bn

2

bn
1

exp2b~En
12En

0!L
0

. ~16!

Such a situation appears if the work-bias scheme is u
since both insertions and deletions are biased~refer to Ap-
pendix B! or if the configurational-bias scheme is impl
mented with the test deletion method@30#.

Note that the concept of forcing a transition and sub
quently correcting the sampling scheme indeed origina
from the Metropolis algorithm itself@2#. Let us consider tha
a configuration chain has been constructed with the Metro
lis algorithm up to configurationCn . At the next step, one
assumes that the configurationCn8 has been generated witha

priori probability bn
n8 but was rejected with the Metropoli

probability

12
bn8

n Pn8

bn
n8Pn

, ~17!

wherePn andPn8 are the corresponding Boltzmann weigh
andbn8

n is thea priori probability to generateCn from Cn8 . In
order to insure microreversibility for each step of the who
sampling process, the next configurationCn11 in the chain is
constructed as follows: one forces a transition towards
current configuration (Cn115Cn). Considering that for the
reverse process, one also generates the trial configuratioCn8
from Cn11 and also rejects it, one would also have to perfo
a forced transition towardsCn11. Since the last move is car
ried out with the total probability of

bn11
n8 S 12

bn8
n11Pn8

bn11
n8 Pn11

D , ~18!

it results that detailed balance is mercifully satisfied betw
any two identical configurations of the chain.

B. Residence weight sampling

One wishes to modify the Widom method in such a w
that the estimation of the test particle contribution to t
partition function is no more based on a ‘‘blind random sa
pling’’ procedure but is rather obtained by means of an
equate form of importance sampling as in the Metropo
algorithm itself.

A first solution to the problem has been proposed a
consists in performing a Metropolis sampling of the bias
dual ensembleṼ5Z01Z1expbmest, where mest is a con-
stant. During a single simulation, both trial insertions a
trial deletions are thus proposed for the Metropolis acc
tance criterion. The biasmest is introduced because in prac
tice, the partition function ratioZ1 /Z0 spans many orders o
magnitude and, as a result, occupation probabilities may
confined to eitherZ1 or Z0. The balancing factormest is
04670
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adequately estimated using an iterative procedure, and o
pation probabilities,p@1# and p@0#, can then be accumu
lated. The chemical potential can finally be extracted fro
both mest and the occupation probabilities:

mex52
1

b
ln

p@1#

p@0#
1mest. ~19!

We now propose a more direct method that similarly u
lizes both insertions and deletions during a single run
that does not require any estimation of the value to comp
The dual ensembleZ̃5Z01Z1 will be sampled, but two
starting configurations,C0 andC1, are required, the first one
belonging toZ0 and the second one toZ1. One also assume
that everya priori trial move leads to a transition fromZ0 to
Z1, or vice versa. Let us now consider that the configurat
chain has been constructed up toC2n11. The a priori prob-
ability b2n11

2n to remove the just inserted particle with th
reverse expanded move is different from one. In order
include both trial insertions and deletions in the sampl
procedure, one proceeds as follows: one generates a new

particle deletion ofa priori probability b2n11
2n118 ; one then

selects configurationC2n12 betweenC2n and C2n118 . Simi-
larly, for the next (n12)-nd step, the test particle is intro
duced either at a new trial location or at the old location.

The selection procedure for deciding whether the n
configuration is the older one or the new one must insure
all the a priori probabilities are adequately accounted for
the sampling procedure. Actually, the adequate scheme is
residence weight algorithm initially developed for perform
ing Monte Carlo simulations on parallel computer archite
tures @31#. This scheme satisfies the required criteria. T
algorithm can thus be implemented to compute the free
ergy difference of the present problem. Such a sampling p
cedure will be called ‘‘residence weight sampling.’’ Th
technique is now described and a proof that detailed bala
is obeyed is then given. The three possible versions of
test insertion method mentioned in the present study
their essential features are summerized in Table II.

With residence weight sampling, the basic moves that w
be generated are either particle insertion or deletion in a d
ensembleZ̃5Z01Z1. Two starting configurationsC0 andC1
are required, the first one belonging toZ0 and the second one
to Z1. The algorithm is defined as follows:

~i! generate a trial particule insertion or deletion and co

pute the forwards and backwardsa priori probabilitiesbn
n8

andbn8
n .

~ii ! Compute the forwards and backwards factorsan
n8

5(bn
n8)21 exp1

2 b(En2En8) an8
n

5(bn8
n )21 exp 1

2b(En82En),
wherebn

n21 is the storeda priori probability for the back-
wards preceding move.

~iii ! Select the (n11)-st configuration amongCn21 and
Cn8 according to their respective normalized probabiliti

an
n21/(an

n211an
n8) andan

n8/(an
n211an

n8).
~iv! If Cn115Cn8 then setbn11

n 5bn8
n , otherwisebn11

n

5bn21
n .
5-5
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TABLE II. Schematic representation of the three possible insertion methods aimed at comput
excess chemical energy in a low density system@mex521/b ln(Z1 /Z0)#. In high density systems, biase
Monte Carlo moves can be implemented with the three methods. However, the method of expand

sembles proposes to introduce additional channels in the partition functionZ̃ ~refer to the Appendix B!.

Quantity to estimate Techniques and features

mex52
1
b

ln^exp2bDE1&0 Widom test insertion fromZ0 to Z1

non-Boltzmannian and asymmetric sampling ofZ01Z1

no diagnostic tool to check the convergence

mex5mest2
1
b

ln
p@1#

p@0#
Method of expanded ensemble inZ01Z1expbmest

Boltzmannian sampling ofZ01Z1expbmest

requires a guessmest of the quantity to measure but robust

mex52
1
b

ln
t1

t0
Residence weight sampling ofZ01Z1

non-Markovian sampling, symmetric with respect toZ0 andZ1,
built-in diagnostic tool to check the convergence.
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~v! Compute the residence weighttn51/(an
n211an

n8), in-
crement the cumulated residence weight of the appropr
channel: if n is even, t(0)→t(0)1tn , otherwise,t(1)
→t(1)1tn .

One then obtains a symmetric residence weight ratio
the excess chemical potential

mex52
1

b
ln

t~1!

t~0!
. ~20!

Note that, when the system resides in ensembleZ1, the
new test particle is selected among theN11 particles. The
corresponding selection probability (N11)21 must not be

taken into account in thea priori probabilitiesbn
n8 because it

simply corresponds to a reversible change of the particle
bels. The fact that particles are not distinguishable is alre
taken into account in the ideal chemical potential.

Let us now prove that the weighted detailed balance@Eq.
~10!# is indeed satisfied by the residence weight algorith
The proof first requires to define the forwards and the co
sponding backwards weighted probability fluxes in order
make sure that the algorithmic scheme is reversible and
the volume of phase space is preserved. The reversibilit
the algorithm means that it is possible to generate the b
wards chain that associates the same residence weights
same configurations. Let us consider that the backwards
figurational chain has been obtained after having rever
the forwards chain. If one moreover reverses each sele
move and keeps unchanged the unselected trial moves

the same set ofa priori probabilitiesbn
n21 , bn

n8 , bn
n21 and of

acceptance ratesan
n21 , an

n8 , an
n21 is obtained which yields

the same residence weightstn .
One can now rigorously define the weighted balan

equation@equivalent to Eq.~10!# for the residence weigh
algorithm:
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Pnbn

n8
an

n11

an
n81an

n21
r n

n11

5
1

tn11
Pn11bn11

(n11)8
an11

n

an11
(n11)81an11

n12
r n11

n , ~21!

where bn11
(n11)8 is the a priori probability to generateCn

5Cn12 or CnÞCn12 depending on whether the (n11)th

transition corresponds to a reversal or not (an11
(n11)8 is the

associated acceptance rate!. The bias factors r n
n11

5bn
n11/bn

n8 and r n11
n 5bn11

n /bn11
(n11)8 correct for the

‘‘forced’’ reversal events. They are equal to one if the tr
configuration is accepted or if unbiased insertion/delet
moves are implemented.

In order to check that the residence weight

tn5~an
n111an

n8!21 ~22!

is compatible with Eq.~21!, one will consider the two pos
sible cases, whether the transition fromCn is a reversal or
not, separately. Let us first consider that the selected confi
ration leads to a reversal. This means that the trial confi
ration Cn8 is not accepted. At variance with the Metropol
algorithm, the current configurationCn is not forced to transit
towards the current configuration again, but instead, towa
the previous configuration in the chain despite the fact t
this configuration was only stored in memory. The syst
will finally transit to Cn21 whereas ana priori probability of

bn
n8 was generated for the rejected trial configurationCn8 .

One, therefore, has to introduce the bias factorr n
n11

5bn
n11/bn

n8 to correct for the forced transitions when no
uniform a priori probabilities are used.

If the trial configuration is selected,Cn115Cn8 , the prob-
ability flux itself does not need to be corrected : the b
factor r n

n11 is equal to one. The sampling correction for th
non-Markovian nature of the move is entirely included in t

residence weight which is again (an
n111an

n8)21.
5-6



en
d
t o
w

h
d
ity

ty
en

t
e
r

es
in

nc
th
M
r
n

si
ob
he
th

t
a
is
si

b

n-
to

om-
ture
e
eme

ob-

oth
m-
ds
out
om

si-
al-
ed
has
ns/

y
rk-
rried
f
r-
the

ed
sed
ured

ical

COMPUTATION OF A CHEMICAL POTENTIAL USING A . . . PHYSICAL REVIEW E66, 046705 ~2002!
Let us mention that with the work-bias scheme, the g
erateda priori probabilities are infinitely small numbers an
can not be easily manipulated from a computational poin
view. This is the reason why with the work-bias scheme,
will use the following acceptance rates

an
m5Abm

n

bn
m

exp2
1

2
b~Em2En!, ~23!

where the indicesm and n correspond to configurationsCm
and Cn . The previous demonstration still applies since t
modification simply results in multiplying the forwards an
barkwards fluxes in equation by the invariant quant
Abn

n11bn11
n .

Also note that the Metropolis-like formacc(n→n8)

5min(1,an
n8/an

n21) can be used for the selection probabili
instead of the current Glauber-like form. A selection dep
dent residence weight would then be obtained:

tn5H ~an
n11!212~an

n8!21 if reversal Cn115Cn21

min@~an
n21!21,~an

n11!21# otherwise Cn115Cn8 .
~24!

Both residence weights are invariant ifn21 andn11 are
permuted, hence this scheme also is reversible. Finally, le
also mention that a comparative study of the numerical p
formences between the residence weight algorithm and
lated Boltzmannian algorithms is given elsewhere@31#. It is
shown that the related Boltzmannian algorithm can, at b
outperform the residence weight algorithm by a factor of 2
term of sampling efficiency. It seems that the converge
properties of the residence weight algorithm results from
correspondence between the reversal probability and the
tropolis rejection probability. The essential mathematical c
teria that make the Hasting-Metropolis algorithm an efficie
statistical tool should therefore be also fullfilled by the re
dence weight algorithm. These criteria are reviewed by R
ert @27# and the rigorous proof that they also apply to t
residence weight algorithm is beyond the scope of
present article.

III. SIMULATIONS

A. Ising system

We compare the residence weight sampling scheme to
Widom scheme in a case, where transition probabilities
high in order to give a practical proof that the algorithm
correct. We have thus considered a body centered cubic I
model with an ordering enthalpy ofJ5230 meV ~phase
separation!. The internal energy of thisAB binary Ising sys-
tem is:

E~nB!5J (
i , j Þ i

nn

ni
Bnj

B , ~25!

whereni is 1 or 0 depending whether sitei is occupied by a
B atom or not. The summation runs on all nearest neigh
pairs only.
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The residence weight algorithm is implemented with sta
dard unbiased insertions/deletions which are sufficient
guarantee ergodicity. Chemical potentials have been c
puted with varying the composition and constant tempera
T5500 K in a 323 rombohedral computational cell with th
residence weight sampling scheme and the Widom sch
adapted to the transmutation of anA particle into aB par-
ticle. If NA and NB are the respective number ofA and B
particles, then the chemical potential difference can be
tained as follows with the adapted Widom scheme:

Dm52
1

b
ln

NA

NB11
2

1

b
ln^exp2b~E12E0!&0 . ~26!

Results have been displayed in Fig. 1 and show that b
non-Boltzmannian methods yield similar values. In this sy
metric system, the value for the solubility limit correspon
to the intersection with the composition axis, and, is ab
15.3%, in agreement with a previous result obtained fr
semigrand canonical ensemble simulations@32#.

In order to complete the practical validation of the re
dence weight algorithm, we now have to check that this
gorithm can be implemented with rather general bias
Monte Carlo schemes. The residence weight algorithm
been implemented with configurational-bias insertio
deletions. With the configurational-bias scheme, thea priori
probability of an insertion is not univocally determined b
the way the deletion is carried out at variance with the wo
bias scheme considered thereafter. Computation are ca
out at the composition of 10% at.B and at the temperature o
T5500 K. Series of 106 trial insertion/deletions were gene
ated and 10 parallel insertions were used in
configurational-bias Monte Carlo scheme. We founddm
50.199760.0013 in agreement with the simulations carri
out with unbiased insertion/deletions. The use of a bia
insertion scheme thus does not affect the value meas
with the unbiased scheme.

FIG. 1. Normalized chemical potential differencebDm as a
function of B composition in a bcc Ising lattice atT5500 K com-
puted with the residence weight sampling schemeL and with the
classical Widom insertion method1. The solubility limit is in
agreement with previous results obtained from semigrand canon
ensemble simulations.
5-7
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M. ATHÈNES PHYSICAL REVIEW E 66, 046705 ~2002!
B. Lennard-Jones system

To illustrate the usefulness of the residence weight s
pling method, a more relevant problem will now be inves
gated: computing the excess chemical potential of a th
dimensional Lennard-Jones fluid at relatively high dens
and low temperature. We have used as a benchmark, the
study in Ref. @17# and thus implemented the same set
potential and simulation parameters. The usual Lenna
Jones interaction potential, for a pair of particles separa
by a distancer, is given by

JLJ~r !54e@~s/r !122~s/r !6#, ~27!

wheree is the depth of the potential at its minimum, ands is
the van der Waals diameter of the particle. A modified pot
tial was instead used

J~r !5H a2br2 0<r<0.8s

JLJ~r !1c~r 2r c!2d 0.83s<r<r c

0 r c<r ,

~28!

where the cutoff distancer c is taken to be half the lengthL
of a side of the computational cell and the constanta, b, c,
andd are chosen to preserve the continuity ofJ and its de-
rivative. The sizeL of the computational cell is 5.33s, the
temperature,e/kB and the number of particle, 125.

The cell is equilibrated by performing Monte Carlo ra
dom particle displacements at the temperature ofe/kB until
the internal energy stabilizes. The final configuration is tak
as the starting configuration for the subsequent study.
ticle insertions and deletions are realized using the work-b
Monte Carlo scheme detailed in the Appendix B. Mean
ceptance rates of about 50% were used for the particle
placements inside the work-bias scheme and the sim
choiceln5n/M is made for the coupling parameter. Sim
lations are carried out with various insertion rates,M5104,
105, 23105, 53105, 106, 23106 or 53106 ~the number of
trial relaxation steps in the work-bias scheme isM21).
However, the product of the number of residence wei
steps~total number of trials insertion and deletions! by M
will be constant and equal to 1011. This means that the
amount of computer time devoted to each simulation run
approximately constant.

Estimated chemical potentials obtained using the test
sertion, test deletion, and residence weight methods are
payed in Fig. 2. Data are plotted as a function ofM, the
number of switching steps in a work-bias move. Table
yields the standard deviations for the computed mean r
dence weight. The dotted lines in Fig. 2 indicate the low
and upper estimates of the chemical potential compute
Ref. @17#. Figure 3 yields the mean acceptance rates both
the trial insertions and deletions in the residence weight s
pling procedure. Figures 4 and 5 display the workWM

0→1 or
WM

1→0 required to insert or delete the test particle using
work-bias Monte Carlo scheme withM5103 and M5106,
and computed for a set of random trial insertions or de
tions. The estimated chemical potential is inserted in do
lines.
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From the displayed data, it is observed that the estima
chemical potentials using the test insertion or the test d
tion methods agree when the number of intermediate step
the work-bias scheme is larger than 105. The obtained value
is also in agreement with the estimated chemical poten
from Ref. @17#. Since Ref.@17# utilizes a constant tempera
ture molecular dynamics scheme that has the advantag
being much faster, but that is not, strictly speaking, reve
ible, our Monte Carlo simulations justify the approach fo
lowed in Ref.@17#.

When the numberM of switching steps is not large
enough (M<105), the amount of work which is introduce

TABLE III. Standard deviations computed for the mean re
dence weights and obtained by grouping the simulation data
blocks of various lengths :sx , is calculated using 10x ^t&-values
averaged over 5310102x/M trial deletions D or insertions I.

M bmex ^t& s3 s2 s1

D 104 0.158 6.10 1.36 0.45 0.15
I 104 7.14 45.94 14.44 1.79
D 105 1.162 1.34 0.58 0.19 0.05
I 105 4.28 13.68 4.34 1.17
D 23105 1.200 0.867 0.428 0.134 0.041
I 23105 2.88 3.281 1.186 0.243
D 53105 1.251 0.533 0.269 0.0948 0.0335
I 53105 1.863 1.409 0.508 0.179
D 106 1.181 0.426 0.185 0.0701 0.0194
I 106 1.356 0.730 0.291 0.0845
D 53106 1.198 0.305 0.1852 0.0701 0.0194
I 53106 1.356 0.729 0.2913 0.0845

FIG. 2. Normalized excess chemical potentialbmex as a func-
tion of the number of switching stepsM computed by means of:L,
residence weight sampling;1, the test insertion method; andh,
the test deletion method.
5-8
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COMPUTATION OF A CHEMICAL POTENTIAL USING A . . . PHYSICAL REVIEW E66, 046705 ~2002!
into the system during a particle insertion ‘‘almost alway
outpasses the excess chemical potential. This means tha
Boltzmann weight of the trial configuration with respect
the Z1 ensemble is extremely small. As a result the samp
configurations of theZ1 ensemble are not generated in t
peak of the probability distribution function and the me
sured value is meaningless and overestimates the e
value. A similar phenomenon takes place with the parti
deletion method, however, the measured value under
mates the exact excess chemical potential. When the
particle is sufficiently slowly inserted~respectively deleted!,
the peak of the probability distribution function of theZ1

FIG. 3. Mean acceptance rates for accepting the trial insert
L or the trial deletions1 obtained with the residence weight a
gorithm as a function of theM parameter.

FIG. 4. Normalized workbW M
0→1 after M switching steps (M

5103 or M5106) as a function of the initial normalized energ
differencesbW 1

0→15b(E0
12E0

0) for a set of 200 random particle
insertions.
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ensemble~respectivelyZ0 ensemble! is adequatly sampled
and the estimated value is correctly sampled. In such a c
the quantities measured with either the test insertion or
test deletion methods agree.

Concerning the results obtained by residence weight s
pling, it is observed that the estimated chemical potentials
in between the estimations given by the test insertion and
test deletion methods. This fact can be intuitively understo
since the residence weight ratio yielding the chemical pot
tial depends on both the way particles are inserted and
leted. Moreover, from the displayed simulation data in Fig.
it is observed that a correct estimation is obtained using
residence weight algorithm when~i! the test deletion and tes
insertion method yield similar results;~ii ! the mean accep
tance rate for accepting the trial insertions with the reside
weight algorithm is greater than 10%. Point~i! results from
the fact that the chemical potential estimated from reside
weight sampling lies between the two estimations given
the test insertion and test deletion methods and from the
that the two latter methods, respectively, overestimate
underestimate the exact chemical potential. In order to
plain point ~ii !, let us consider that the number of switchin
stepsM is not large enough. Then the particle insertions
not accompanied by an efficient relaxation as can be dedu
from Fig. 4. Even though a first move is accepted, the al
rithm is likely to perform a reversal at the next step since
will have to choose between the old configurationCn21 and a
new trial configurationCn8 with two additional high energy
defects. The first one corresponds to the badly inserted
ticle and the second one corresponds to the void or distor
left by the particle deletion. With increasing the number
switching steps during the particle insertions and deletio
the introduced distortions become less important and

s

FIG. 5. Normalized workbW M
0→1 after M switching steps (M

5103 or M5106) as a function of the initial normalized energ
differencesbW 1

0→15b(E0
12E0

0) for a set of 200 random particle
deletions.
5-9
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M. ATHÈNES PHYSICAL REVIEW E 66, 046705 ~2002!
mean acceptance rate increases as observed in Fig. 3.
sults that when the acceptance rates are high enough, a l
amount of the computation is invested in generating unc
related configurations and bothZ0 andZ1 ensembles can b
explored adequately. At variance, a large amount of rever
implies that the explored configurations in eitherZ0 or Z1 are
extremely correlated. This means that in the residence we
sampling method, a weak convergence expresses itself
large number of reversals.

In the limit where work-bias Monte Carlo moves are ca
ried out infinitely slowly, the scheme corresponds to a th
modynamic integration@15,17#. It implies that if the work-
bias scheme is performed sufficiently slowly, the me
acceptance rate for insertions or deletions will always
come substantial and the free energy difference will be
equately estimated in a single run. This property remains
even though the partition function ratioZ1 /Z0 span many
orders of magnitude because acceptance rates always de
on Boltzmann ratios of two configurations belonging both
the same subensemble, eitherZ0 or Z1. The only ajusting
parameter is the number of switching steps to perform w
the work-bias scheme. This preliminary task is also pres
in the method of expanded ensembles which requires to
termine the minimum number of intermediate ensembles
subsequently sample. However, the advantage of the
dence weight algorithm is that it does not require to ite
tively construct whatever expanded ensemble, i.e., to find
adequate set of ‘‘equilibrium’’ balancing factors. This prac
cal advantage of the residence weight sampling techn
makes it possible to obtain direct convergence in the Gi
ensemble : this would require to replace the dual canon
ensembleZ̃ by a dual Gibbs ensembleG̃5G01G1 where
G0 andG1 are two Gibbs ensembles differing from one te
particle.

IV. CONCLUSION

We have proposed to use a specific residence weigh
gorithm to compute a chemical potential in combination w
the test insertion method and various biased schemes fo
serting and deleting the test particle. Since the work-b
Monte Carlo scheme considered in this paper also appea
be an efficient tool for performing insertions, deletions
exchanges in dense systems, its implementation with
residence weight sampling method yields a general meth
ology enabling to compute free energy differences. The m
advantage of the present methodology is that it possess
built-in diagnostic tool that allows to optimize the conve
gence of the estimated value towards the exact free en
difference.
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APPENDIX A: GRAND CANONICAL ENSEMBLE

The grand canonical partition function of a system
chemical potentialm, volumeV, contained in a cubic cell of
edgeL and with scacled particle coordinatessN, is given by

Q~m,V,T!5 (
N50

`
exp~bmN!VN

L3NN!
E

0

1

. . . E
0

1

dsN

3exp2bE~sN;L !, ~A1!

whereE(sN;L) is the internal energy of a configuration wit
N particles. The corresponding probability density is

P0}
exp~bmN!VN

L3NN!
exp2bE~sN;L !. ~A2!

The first Monte Carlo simulation in the grand canonical e
semble has been carried out by Norman and Filinov@33#.

APPENDIX B: WORK-BIAS MONTE CARLO SCHEME

Jarzynski’s fast-growth method@15–17,34# is a general
methodology for computing free energy differences
means of various stochastic processes that sastify a w
detailed balance condition. If we assume that the basic
chastic process of the fast-growth method is a Monte Ca
process, Crooks@29# has shown that ‘‘macro moves’’ can b
defined which satisfies a stronger condition of detailed b
ance ~microreversibility or ‘‘superdetailed balance’’ in th
Monte Carlo language!.

The fact that the stronger condition of ‘‘superdetailed b
ance’’ holds allows us to use the macro moves~now called
‘‘work-bias’’ moves! with a residence weight algorithm o
with a Metropolis algorithm. Let us also assume that t
work-bias scheme is aimed at inserting a test particle. T
scheme enables to compute the chemical potential by m
of residence weight sampling or to explore open ensem
~with varying number of particles! such as the grand canon
cal ensemble with the Metropolis algorithm. In this appe
dix, we describe the ‘‘work-bias Monte Carlo scheme’’ in th
framework of the Metropolis algorithm. Considering the M
tropolis algorithm will make it easier to exhibit the reversib
nature of the process outlined by Crooks. Moreover, this
proach will also enable us to mention the analogies and
ferences with both the method of expanded ensembles
the configurational-bias scheme.

1. Expanded ensemble

The work-bias Monte Carlo move consists in allowing t
gradual insertion or removal of the test particle. A coupli
parameterl for this ‘‘phantom’’ particle is thus introduced
and is first assumed to be an ensemble variable. One
defines a set of M increasing values L
5$l0 , . . . ,ln , . . .lM%, wherel050 andlM51 mean that
the particle is entirely decoupled or entirely inserted in t
computational cell, respectively. The partial excess chem
potentialsmn

ex5lnmex are also introduced in the expande
partition function:
5-10
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V5 (
m50

m5M

Zlm
expbmn

ex , ~B1!

whereZlm
is the excess canonical partition function of

ensemble at temperatureT and containingN particles and an
additional phantom particle with coupling parameterlm .
Using the notation already introduced,E0 andE1 correspond
to the configurational energy with the phantom particle
tirely decoupled or entirely inserted, respectively. Since
interaction energy of the phantom particle with the norm
particles is lm(E12E0), the total internal energy isE0

1lm(E12E0).
The evolution rules in this expanded ensemble comp

the usual particle trial displacements and additionall
changes. The acceptance probability for the latter trial mo
is

acc~lm→lm61!5min~1, exp2b@~lm612lm!~E12E0!

1mm61
ex 2mm

ex# !. ~B2!

The method of expanded ensembles is essentially an i
tive weighing procedure@20,21,23# aimed at finding the se
of partial excess chemical potentials, assumed to be the
justable parameters, that permits the uniform sampling of
intermediate stages of the expanded ensemble. Howe
since only the chemical potentials of the fully inserted t
particle is of physical interest, one can introduce macro
ased Monte Carlo moves transiting directly fromZ0 to Z1
and vice versa. The proposed modification consists in in
porating features from biased Monte Carlo methods@6#.

2. Formulation of biased Monte Carlo moves

The intermediate sampling stages can be removed if
formulates ‘‘macro’’ Monte Carlo moves allowing to trans
directly from l050 to lM51 or vice versa.

The macro Monte Carlo move, as proposed by Jarzyn
@15,16#, breaks down the generation of the trial configurati
in 2M21 steps. These steps alternatively consist in slo
transforming or relaxing the system. For this purpose,
l-coupling parameter of the expanded ensemble metho
forced to always increase~or decrease! in the predefined se
of M increasing valuesL5$l0 , . . . ,lm , . . .lM%.

The pth relaxation step is a particle displacement wh
can be either biased or unbiased but which is perform
while keeping constant thel value as in the method of ex
panded ensemble. If the forwards and backwardsa priori
trial probabilities associated to the move aredp

1 anddp
0 , then

the acceptance probability for the move is

pp5minS 1,
dp

0

dp
1

exp2bDEpD , ~B3!

where DEp is the energy variation associated to thepth
move. Thepth gradual transformation step consists in
creasing the coupling parameter fromlp21 to lp . The con-
figurational energies of the system with the phantom part
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entirely decoupled or coupled are monitored after each
tempted particle displacement. The interaction energy of
phantom particle with the other particles afterp attempted
displacements andp partial transformations equalslp(Ep

1

2Ep
0): lp is the value of the coupling parameter afterp

transformations,Ep
0 andEp

1 are the corresponding configura
tional energies of the system assuming that the phantom
ticle is entirely decoupled or coupled, respectively. The s
tem internal energy after thep displacements andp partial
transformations~i.e., after p switching steps!, at the 2pth
step, isE2p5Ep

01lp(Ep
12Ep

0). At the (2p11)th step an
additional displacement has been tried which impl
E2p115Ep11

0 1lp(Ep11
1 2Ep11

0 ) with E2p115E2p in case
the trial displacement has been rejected.

Now that these preliminary definitions and consideratio
have been given, it is possible to give a precise compu
tional description of the work-bias scheme:

~i! randomly select the location of the particle to inse
and computeE0

1 and E0
0 the energies after and before th

insertion.
~ii ! IterateM21 times the two subsequent steps (n starts

from 1!.
~a! Increase the coupling parameter fromln21 to ln

~switching step!,
~b! generate a random trial displacement to a random

selected particle, compute the energy variationDEn
5E2n212E2n22, the forwards and backwardsa priori trial
probabilities, decide to carry out the move or not. In case
move is rejected, resetE2n21 to E2n22 , En

0 to En21
0 , andEn

1

to En21
1 .

~iii ! Increase the coupling parameter fromlM21 to lM .
~iv! Accept or reject the whole procedure using the f

lowing acceptance probability:

acc~0→1!5min~1, exp@2bWM
0→11bmex# !, ~B4!

where

W M
0→15 (

n51

M

~ln2ln21!~En21
1 2En21

0 !. ~B5!

Within this macromove, the intermediate Metropolis a
ceptance rates for thel transitions have been transfered in
the correcting bias of a Monte Carlo ‘‘macromove.’’ Th
acceptance barrierbW M

0→1 indeed corresponds to the sum
mation of the barriers associated to theM imposed graduall
transitions as given by Eq.~B2!. Since the acceptance prob
abilities of the M21 trial particle displacements have a
ready been accounted for by the inside accept/reject pr
dures, their associated acceptance barriers do not appe
Eq. ~B5!.

This scheme can be immediately transposed to the gr
canonical ensemble. In the grand canonical ensemble the
ation of a (N11)st particle is accepted with a probability
5-11



e
or
r

s
-
te

tie
he
rs
in

a
o

-
n

that

k-

rds

iate
the

rder.
-
(
e

o
-
me
is
r
s

had

e to
nd
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acc~0→1!5minS 1,
V

~N11!L3
expb@2W M

0→11m# D
~B6!

and that the associated deletion of one of the (N11) par-
ticles is accepted with the probability

acc~1→0!5minS 1,
~N11!L3

V
expb@2W M

1→02m# D ,

~B7!

whereW M
1→052W M

0→1 corresponds to the opposite of th
summation in Eq.~B5!. Note that one must also impose, f
reasons made clearer below, that the coupling paramete
sociated to the particle deletion satisfies the conditionln

2

512lM2n .
The equivalence between the acceptance probabilitie

Eqs. ~B4! and ~B6! simply results from the relationship be
tween the chemical potential and the excess chemical po
tial

V

~N11!L3
expbm5expbmex. ~B8!

3. Proof of detailed balance

In order to prove that the various acceptance probabili
@Eqs.~B4!, ~B6!, and~B7!# obeys superdetailed balance, t
general principle of biased Monte Carlo schemes is fi
briefly recalled. A Metropolis Monte Carlo move consists
two parts: in the first part a new trial configurationC1 is
generated with the associateda priori trial probabilityb0

1, in
the second part, one decides whether the trial move is
cepted or not. The acceptance probability is calculated s
to satisfy the detailed balance criterion

P0b0
1acc~0→1!5P1b1

0acc~1→0!, ~B9!

whereb1
0 is an a priori trial probability to generate the re

verse move, andP0 and P1 the corresponding Boltzman
as-

in

n-

s

t

c-
as

weights before and after the transition. One has to prove
both probabilities~B6! and ~B7! are compatible with Eq.
~B9!. This can be done by introducing the following bac
ward’s probability flux fromC1 to C0:

K~1→0!5P1b1
0acc~1→0! ~B10!

and by checking its equality with the corresponding forwa
probability flux K(0→1), following Ref. @29#.

The demonstration thus requires to define the appropr
sequence of backwards displacements. It is obtained from
forwards displacement sequence taken in the reverse o
One proposes for thenth backwards trial particle displace
ment the opposed displacement corresponding to theM
2n)-th forwards trial particle displacement if the latter on
had been accepted. If it had not been accepted, thenth back-
wards trial displacements and the (M2n)th forwards are
identical. We define asdn

1 anddn
0 the a priori forwards and

backwards probabilities for thenth forwards move. Let us
write rn

1 the probability to have accepted$rn
1

5min@1,(dn
0/dn

1)exp2bDEn)#% or refused @rn
151

2(dn
0/dn

1)exp2bDEn# thenth forwards displacement. Due t
the conditionln

2512lM2n , each forwards and its corre
sponding backwards particle displacement involve the sa
l value. The (M2n)th backwards acceptance probability
rM2n

2 5min@1,(dn
1/dn

0)expbDEn# in case of acceptation, o
rM2n

2 5rn
1 in case of rejection. The following property i

thus always satisfied:

dn
1rn

1

dM2n
2 rM2n

2
5

expb@En21
0 1ln~En21

1 2En21
0 !#

expb@En
01ln~En

12En
0!#

~B11!

sinceEn21
1 5En

1 , En21
0 5En

0 anddM2n
2 5dn

1 in case the trial
move had been rejected. Note also that if the trial move
been accepted, the backwardsa priori trial probability is
different and is expressed asdM2n

2 5dn
0 .

The definition of the reverse scheme now enables on
derive the probability flux ratio relative to the creation a
deletion of a particle:
K~0→1!

K~1→0!
5

exp2bE0
0

exp2bEM21
1

F )
n51

M21

dn
1rn

1G
F )

n51

M21

dM2n
2 rM2n

2 G
acc~0→1!

acc~1→0!
~B12!

5
exp2bE0

0

exp2bEM21
1 F )

n51

M21 expb@En21
0 1ln21~En21

1 2En21
0 !#

expb@En
01ln~En

12En
0!#

Gexpb@EM21
0 1lM21~EM21

1 2EM21
0 !#

expbEM21
1

~B13!

51, ~B14!
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where Eq.~B13! results from combining Eqs.~B4! and~B11!
into Eq. ~B12!.

When both the forwards and backwards transformati
are of same nature, as it is the case for particle exchang
the Gibbs ensemble, the reversibility condition thus requ
ln512lM2n . Finally, let us note that the random selecti
of a particular kind of transformation also involves ana pri-
ori probability which was omitted in Eq.~B14!. This point
nevertheless implies that the probability to select a trans
mation or its associated reverse one~especially a deletion
and an insertion! are equal. If they are not equal, as it is t
case, for instance, in an early rejection scheme@35#, the ap-
propriate bias must be incorporated into the acceptance p
ability.

It now is instructive to derive the biasB(0→1)5b1
0/b0

1

associated to the acceptance ofC1 from C0, whereb0
1 andb1

0

are the corresponding forwards and backwardsa priori prob-
abilities. The bias appears as a product of Boltzmann we
ratios in the expanded ensemble:

B~0→1!5 )
n51

M21 expb@En
01ln~En

12En
0!#

expb@En21
0 1ln~En21

1 2En21
0 !#

.

~B15!

The work-bias Monte Carlo scheme is a hybrid method: i
derived from the proven efficient method of expanded
sembles and incorporates the essential feature of bi
Monte Carlo methods which makes these methods m
practical and amenable to Gibbs ensemble simulations
comparative examination between the widespre
configurational-bias Monte Carlo scheme and the pres
scheme may thus appear appropriate. In both the work-
and configurational-bias schemes, the choice of the trial c
figuration results from an energy optimization. However,
work-bias scheme differs from the configurational-b
scheme by the fact that the energy optimization results fr
a full cell relaxation. This is not the case in th
configurational-bias scheme where other molecules are
allowed to relax. Another difference concerns the fact t
with the work-bias scheme, the backwardsa priori probabil-
ity is univocally determined by the forwardsa priori prob-
ability. This is not the case either in the configurational-b
scheme. For instance when a molecule is removed~forwards
move!, the backwardsa priori probability must be generate
a posteriori by tracing back the molecule. Many differen
ways exist to trace back the molecule with t
configurational-bias method.

Nevertheless, the work-bias and configurational-b
schemes share an essential property. Let us for instance
sider that a polymer chain is to be inserted or deleted w
the configurational-bias scheme. Polymer beads, which
04670
s
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s

r-
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s
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re
A
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introduced or removed one after an other, interact both w
the other polymers and with their own uncompleted chain
the potential energiesUn

ext andUn
bond, respectively. The for-

wards and backwards relaxation stages are carried out fo
sameUn

ext andUn
bond values and so for the same ‘‘fractional

composition. In the work-bias scheme presented here, al
forwards and their associated backwards relaxation sta
are carried at the samel value, and hence for the sam
‘‘fractional’’ composition also. The formal correspondenc
between both methods is expressed asUn

ext[E0 and Un
bond

[ln(E12E0).
The last mentioned property is important. Indeed, a bia

Monte Carlo scheme has already been tested for ox
glasses@36,37# to directly minimize the internal energ
through a structure relaxation by repositioning the neighb
ing atoms. In this previous scheme, the forwards and th
associated backwards relaxation stages in the gradual tr
formation were not carried out at the same compositi
~e.g., for the samel value!, even if the backwards relaxatio
sequence was determined by the forwards displacemen
quence taken in the reverse order. This way of proceed
not only complexified the computational scheme, but w
also responsible for the limitation of the method: the reve
trial probability b10 is computed with the reverse relaxatio
steps forced to follow a non-natural configurational pathw
The bias hence decreased dramatically~towards zero! with
the number of intermediate steps and deteriorated the
ciency of the method. The scheme appeared to be impra
cable when applied to an oxide glass at realistic temperat
@36,37#.

Considering that the simulation takes place in the gra
canonical ensemble, the data displayed in Fig. 4 show
about 10% of the particle insertions would be accepted
M5106, ~estimated from the number of points in Fig. 4 th
are below the horizontal dotted line representing the impo
excess chemical potential!, while for M50 or M5103 the
acceptance probability for inserting the most favorable t
particle would be 10230 and 10218, respectively. Mean ac
ceptance probabilities increase with the length of the rel
ation procedure. The enhancement of acceptance proba
ties for a given particle insertion which is gained thanks
the relaxation procedure can be directly estimated in Fig
It corresponds to the mean vertical distance separating
displayed data to the bisectrix. Increasing gains can be
tained when the number of switching steps increases f
M5103 to M5106. It confirms that the method does no
deteriorate with increasing the relaxation scheme and tha
gain outpasses, by far, the additional computation cost
quired by the biased scheme. Since the energy evalua
during a particle displacement consumes the largest pa
computational time, the additional cost of a work-bias mo
can be estimated as 3 and 6 orders of magnitude forM
5103 and M5106, respectively, with respect to the tim
required for the direct particle insertion.
5-13
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